Accurate satellite measurements depend on rigorous radiometric performance monitoring for reliability and precision in data collection. EUMETSAT achieves this through ongoing monitoring of operational missions using vicarious calibration and inter-calibration systems.
Vicarious calibration and inter-calibration techniques employ natural targets, such as warm deserts, the Moon, Deep Convective Clouds (DCC), and dark oceans, to transfer calibration from a radiometric reference to the monitored mission. These methods are indispensable for instruments like MSG/SEVIRI, lacking an on-board calibration device for solar channels, yet widely used for monitoring and validating the radiometric performance of on-board calibration systems.
This paper presents the routine radiometric calibration monitoring of MTG-I1/FCI, MSG/SEVIRI and Sentinel-3 OLCI and SLSTR Level-1 products using our multi-mission tool, Mission Integrated Calibration Monitoring and Inter-Calibration System (MICMICS). The monitoring process encompasses diverse calibration targets, such as desert sites, DCC, lunar observations, and inter-comparisons with other reference instruments, enhancing the overall assessment.
The Sentinel-2 mission is dedicated to land monitoring, emergency management and security. It serves for monitoring of land-cover change and biophysical variables related to agriculture and forestry. The mission is also used to monitor coastal and inland waters and is useful for risk and disaster mapping. The Sentinel-2 mission is fully operating since June 2017 with a constellation of two polar orbiting satellite units. Both Sentinel-2A and Sentinel-2B are equipped with an optical imaging sensor MSI (Multi-Spectral Instrument) which acquires optical data products with spatial resolution up to 10 m. Accurate atmospheric correction of satellite observations is a precondition for the development and delivery of high quality applications. Therefore the atmospheric correction processor Sen2Cor was developed with the objective of delivering land surface reflectance products. Sen2Cor is designed to process monotemporal single tile Level-1C products, providing Level-2A surface (Bottom-of-Atmosphere) reflectance product together with Aerosol Optical Thickness (AOT), Water Vapour (WV) estimation maps and a Scene Classification (SCL) map for further processing. The paper will give an overview of the Level-2A product content and up-to-date information about the data quality of the Level-2A products generated with Sen2Cor 2.8 in terms of Cloud Screening and Atmospheric Correction. In addition the paper gives an outlook on the next updates of Sen2Cor and their impact on Level-2A Data Quality.
In the frame of the Copernicus programme, ESA has developed and launched the Sentinel-2 optical imaging mission that delivers optical data products designed to feed downstream services mainly related to land monitoring, emergency management and security. The Sentinel-2 mission is the constellation of two polar orbiting satellites Sentinel-2A and Sentinel-2B, each one equipped with an optical imaging sensor MSI (Multi-Spectral Instrument). Sentinel-2A was launched on June 23rd, 2015 and Sentinel-2B followed on March 7th, 2017. With the beginning of the operational phase the constellation of both satellites enable image acquisition over the same area every 5 days or less. To use unique potential of the Sentinel-2 data for land applications and ensure the highest quality of scientific exploitation, accurate correction of satellite images for atmospheric effects is required. Therefore the atmospheric correction processor Sen2Cor was developed by Telespazio VEGA Deutschland GmbH on behalf of ESA. Sen2Cor is a Level-2A processor which main purpose is to correct single-date Sentinel-2 Level-1C Top-Of-Atmosphere (TOA) products from the effects of the atmosphere in order to deliver a Level-2A Bottom-Of-Atmosphere (BOA) reflectance product. Additional outputs are an Aerosol Optical Thickness (AOT) map, a Water Vapour (WV) map and a Scene Classification (SCL) map with Quality Indicators for cloud and snow probabilities. Telespazio France and DLR have teamed up in order to provide the calibration and validation of the Sen2Cor processor. Here we provide an overview over the Sentinel-2 data, processor and products. It presents some processing examples of Sen2Cor applied to Sentinel-2 data, provides up-to-date information about the Sen2Cor release status and recent validation results at the time of the SPIE Remote Sensing 2017.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.