Raman fiber lasers are an excellent source for achieving high powers in wavelengths conventionally inaccessible with rare-earth-doped fiber lasers. In recent years, wavelength-tunable cascaded Raman lasers have been achieved using a Random Distributed Feedback Raman Fiber laser pumped in the 1micron wavelength band. Here, wavelength tuning is achieved using a combination of output power tuning for selecting different Stokes orders and tuning the wavelength of the pump source for output wavelength tuning around a specific Stokes order. In this approach, the feedback in the laser is broadband, and thus, the spectral purity and spectral linewidth of the output is severely compromised. There have been approaches to control the feedback using different filter architectures such as WDMs, Fabry-Perot filters, filter-fibers. Still, each has limitations in either the operating wavelength window or the spectral resolution. Here, we demonstrate a cascaded Raman laser comprising a reflective Fourier pulse shaper that provides near arbitrary feedback control. Our approach can enable wavelength and linewidth tunable lasers with a fixed wavelength pump. The pulse shaper operates over a wavelength region from 1.1 – 1.3micron, achieves spectral features as small as 0.5nm. The output of the cascaded Raman laser is over 10W, and the center wavelength can be selected from discrete lines at 1117nm, 1175nm, 1240nm with over 15nm of fine-tuning around each. The spectral purity of the output is <95% in all cases. The linewidth of the output is reduced to sub-nm levels and can be continuously tuned from 1-4nm by pulse shaper settings.
Cascaded Raman Fiber Lasers (CRFL) bridges the gap between conventional fiber lasers emission bands by providing output in the intermediate wavelengths by cascaded Raman stokes conversion. Recently, random distributed feedback (RDFB), which provides broadband feedback, has shown to provide a great amount of wavelength tunability. Currently, coarse tuning in these lasers is achieved by controlling the Raman Stokes order through the power and feedback tuning, while fine-tuning within a Stokes order is achieved using a wavelength-tunable pump laser. Feedback tuning is achieved through simple filters such as short-pass filters to terminate the Raman cascade or a cascade of filters to enhance filtering complexity. In either approach, to achieve wavelength fine-tuning over several Raman Stokes orders, the system complexity is substantially enhanced. Here, we overcome this limitation by using a Fourier spectral shaper, a technique for achieving arbitrary spectral control to modify the feedback. A photolithographically fabricated 2-D mask in the shaper whose spatial co-ordinates can be altered together with the presence of multiple patterns on the mask enables a wide variety of filtering functions with high spectral resolution. In this work, we demonstrate a proof of concept cascaded Raman laser system pumped with a fixed wavelength laser at 1064nm, which can achieve tunable laser output around the first, second and third Stokes components of the 1064 nm pump at 1117 nm, 1175 nm, and 1240 nm. Multiwatt class output powers are demonstrated with a high degree of wavelength conversion of < 95 % in all cases.
KEYWORDS: Supercontinuum sources, Fiber couplers, Continuous wave operation, Cladding, Optical filters, Collimators, High power fiber lasers, High power lasers, High power fiber coupled lasers, Optical pulse shaping, Femtosecond pulse shaping
Femtosecond pulse shaping, a widely used technology, enables the generation of light sources with arbitrary amplitude, phase and polarization in the ultrafast regime. This technology has seen applications in fiber and nonlinear optics, OCT, confocal microscopy, bandpass filtering etc. However, these shapers work primarily at low optical powers under the 100mW level, limited by in and out coupling optics, shaper configurations and optical design of the shaper. Recently, another exciting field of research has been high power fiber laser sources. Various high power fiber sources based on a variety of nonlinear phenomena such as high power supercontinuum sources, Raman lasers etc., have been demonstrated. However, owing to 10s of W class optical powers involved, Fourier shaping in this field has not been utilized effectively thereby limiting many potential applications. Here, we demonstrate a scalable design for a high power Fourier shaper in 4-f configuration capable of handling 20 W of CW lasers with a working bandwidth of over 450nm between 1-1.5 micron connecting the two very important Yb and Er emission windows. Our design implements a transmissive geometry thereby isolating input and output beams which is otherwise provided by fiber coupled circulators, a component unavailable at high power levels for a broadband source. Cladding mode stripping is effectively implemented to heat-sink the uncoupled laser light to ensure high power operations feasible. The design also takes accounts of modifications in fiber coupled collimators and amplitude masks to conform with the demands of high power fiber laser technology.
High power polarised narrow linewidth sources are of immense importance in coherent beam combining (increased path length accuracy), spectral beam combining (reduced angular spread), non-linear frequency conversion (increased parametric gain) and remote detection. Power scaling of narrow linewidth sources is primarily limited by Stimulated Brillouin Scattering which can be overcome by spectral broadening before amplification to higher powers. Various applications have different requirements of spectral purity and power which can be met if the source line width is tunable. We demonstrate a narrow line width polarisation maintaining (PM) laser with continuous linewidth tuning from ~2.88 GHz to ~9.88 GHz with over 20 W of output power with a polarisation extinction ratio (PER) greater than 20 dB. We achieve continuous linewidth tuning through pure phase modulation of a 1064 nm DBR laser with a white noise source whose bandwidth and power are tuned with a low pass filter bank and variable attenuation of the drive voltage to the modulator. This dual control mechanism enables gapless tuning of the linewidth of the source. A cascade of optimized PM Yb-doped fiber preamplifier and power amplifier is used to scale the output power to over 20W. Combined with the wavelength tuning of the DBR seed, the tunable spectral width makes it versatile for use in a wide range of applications.
We report the surprising observation of yellow to red visible light flashes in the splice point connecting the seed stage to the power amplifier in a high power, narrow-linewidth, polarisation-maintaining Ytterbium doped fiber laser. The multistage laser delivers upto 500W of power with a tuneable linewidth between 2.88 GHz to 9.88 GHz at 1064 nm. For different linewidths, the visible flashes were observed at different power levels of the laser. We observed a strong correlation between these flashes to the appearance of backward pulses with the onset of Stimulated Brillouin Scattering (SBS). We identify the cause for the flashes to be a two part phenomena. Beyond a threshold level, SBS results in the formation of high peak power pulses. These pulses undergo cascaded Raman scattering into higher order stoke wavelengths. These higher order pulses are unaffected by the isolator separating the amplifier stages and moves back into the seed stage with lower effective area, higher NA fibers. We recently demonstrated that 2nd and 3rd harmonic generation can occur in high NA, low effective area fibers assisted by Cherenkov-type phase matching between core light in the NIR and cladding light in the visible. Through processing of the images of the flash acquired with high resolution, we identified the wavelengths to be a mixture of the second harmonic components of the 2nd and 3rd order Raman Stokes of the 1064 nm laser wavelength (1175nm/588nm and 1240nm/620nm). We anticipate the use of these flashes as a potential monitor for the onset of SBS.
We recently reported the highest average power (70 W) from an octave spanning (880nm to >1900nm) CW supercontinuum source module constituted of standard telecom fiber and which can be pumped using an Ytterbium laser source operating at any wavelength. Since many applications demand a spectrally stable and repeatable supercontinuum, we have investigated the spectral stability of this supercontinuum source over an extended period of operation (over 15minutes). The overall change in spectral profile was investigated as a function of time and power cycling of the source. This experiment was carried out at 3 different wavelengths of the Ytterbium fiber laser pumping the supercontinuum and at 3 different output power levels. The RMS value for the spectral change was used as the metric for comparison. It was observed that the changes are small (within 1-dB) over the duration of the continuous run. We attribute this change in spectral profile with time, to the rise in temperature of fiber which reduces the nonlinear coefficient of fiber and can be potentially controlled by better heat sinking the fiber spool. By allowing the fiber to cool down to ambient temperature through power cycling tests, the spectral change was observed to be very small at < 0.4dB. The standard deviation of output power fluctuations measured using a fast photodetector (over several seconds of acquisition, at 1 us time interval) was ~3%. These results show that our supercontinuum source offers excellent spectral and power stability over an extended period of operation.
Cascaded Raman fiber lasers are agile and scalable offering high optical powers at various wavelength bands inaccessible with rare-earth doped fiber lasers. Although several architectures for building cascaded Raman lasers exist, only the use of cascaded Raman resonators (CRRs) provide a high degree of power-independent wavelength conversion. A cascaded Raman resonator comprises of nested cavities built with two sets of high reflectivity fiber Bragg gratings at fixed Stokes wavelengths and thus can be used only for a fixed input wavelength; thereby restricting its use to a specific Ytterbium-doped fiber laser. The need for fabricating separate grating sets for each input wavelength compromises the simplicity and cost-effectiveness of this technique. Here, we demonstrate through experiment and simulations that the simple inclusion of a distributed broadband reflector at the first-order Stokes component along with the grating sets makes the CRR module very flexible to the input wavelengths, with remarkable improvement in efficiency over a widerange of inputs. In our experiment, a 17W Ytterbium-doped fiber laser tunable from 1055nm to 1080nm is used to pump a CRR module designed for an input wavelength of 1117nm and output wavelength of 1480nm. In conventional operation, for a non-resonant pump input into the CRR, nearly all the output was still unconverted pump. However, with the addition of the broadband distributed feedback reflector for the first-order Stokes component we achieved the 6thorder Stokes at 1480nm over the entire tuning range with a significant improvement in conversion ranging from ~33% to 86% of output at 1480nm.
Power scaling of narrow-linewidth, continuous-wave, fiber lasers with near-diffraction-limited beam quality is primarily limited by stimulated Brillouin scattering (SBS). Among several SBS mitigation techniques, line broadening by phasemodulation has been widely used. Recently, enhanced SBS seeding (threshold reduction) due to spectral overlap between the backscattered, line-broadened signal and the SBS gain spectrum has been reported. Backscattering of the signal is composed of the Rayleigh component and reflections from the end termination. However, in high power amplifiers with small lengths of optical fiber used, the Rayleigh component of the backscatter is anticipated to be small. Here, we report conclusive experimental evidence that even very small reflections from the output facet are enough to substantially reduce the SBS threshold due to spectral overlap. We demonstrate this in a 500W, white noise phasemodulated, narrow-linewidth, polarization-maintaining power amplifier operating at 1064nm. Two commonly used fiber terminations are utilized. In the first case, the amplifier is terminated by a high-power laser cable with an end-cap and anti-reflection coating and in the second case, by an angle cleaved passive delivery fiber. Back-reflections from the angle cleaved facet (<80) providing ~70dB isolation (ideal case) was enough to enhance SBS. We analyzed the threshold differences between the two cases as a function of linewidth from 4.91GHz to ~10GHz. At smaller linewidths, the difference was negligible while at larger linewidths, there was a substantial difference in thresholds (<20%). This linewidth dependent difference in thresholds was accurately simulated by the backward seeding of SBS by the linebroadened signal, thus conclusively proving this effect.
We have demonstrated a ~34 W continuous wave supercontinuum using the standard telecom fiber (SMF 28e). The supercontinuum spans over a bandwidth of ~1000 nm (>1 octave) from 880nm to 1900 nm with a substantial power spectral density of >1mW/nm from 880-1350 nm and ~50-100mW/nm in 1350-1900 nm. The distributed feedback Raman laser architecture was used for pumping the supercontinuum which ensured high efficiency Raman conversions and helped in achieving a very high efficiency of ~44% for supercontinuum generation. Using this architecture, Yb laser operating at any wavelength can be used for generating the supercontinuum and this was demonstrated by using two different Yb lasers operating at 1117nm and 1085 nm to pump the supercontinuum.
Continuous-wave(CW) supercontinuum sources find applications in various domains such as imaging, spectroscopy, test and measurement. They are generated by pumping an optical fiber with a CW laser in the anomalous-dispersion region close to its zero-dispersion wavelength. Modulation instability(MI) sidebands are created, and further broadened and equalized by additional nonlinear processes generating the supercontinuum. This necessitates high optical powers and at lower powers, only MI sidebands can be seen without the formation of the supercontinuum. Obtaining a supercontinuum at low, easily manageable optical powers is attractive for many applications, but current techniques cannot achieve this. In this work, we propose a new mechanism for low power supercontinuum generation utilizing the modified MI gain spectrum for a line-broadened, decorrelated pump. A novel two-stage generation mechanism is demonstrated, where the first stage constituting standard telecom fiber slightly broadens the input pump linewidth. However, this process in the presence of dispersion, acts to de-correlate the different spectral components of the pump signal. When this is sent through highly nonlinear fiber near its zero-dispersion wavelength, the shape of the MI gain spectrum is modified, and this process naturally results in the generation of a broadband, equalized supercontinuum source at much lower powers than possible using conventional single stage spectral broadening. Here, we demonstrate a ~0.5W supercontinuum source pumped using a ~4W Erbium-Ytterbium co-doped fiber laser with a bandwidth spanning from 1300nm to 2000nm. We also demonstrate an interesting behaviour of this technique of relative insensitivity to the pump wavelength vis-a-vis zero-dispersion wavelength of the fiber.
A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.