Nitride semiconductor is a material having potentials for realizing wide frequency range of quantum-cascade lasers (QCLs), i.e., 3~20 THz and 1~8 μm, including an unexplored terahertz frequency range from 5 to 12 THz, as well as realizing room temperature operation of THz-QCL. The merit of using an AlGaN-based semiconductor is that it has much higher longitudinal optical phonon energies (ELO> 90meV) than those of GaAs-based semiconductors (~ 36 meV). In this study, we demonstrate the first lasing action of GaN-based QCLs. We introduced an unique quantum design active region, i.e., “pure 3-level system design”, which is consisting of 2 quantum wells (QWs) per one period. We grew GaN/AlGaN QC structures by using molecular beam epitaxy (MBE). The layer structure of the GaN/AlGaN QCL was consisting of 100~200 periods of QC active layers sandwiched by Si-doped (Al)GaN upper and lower contact layers, which were grown on a high-quality AlGaN/AlN template grown on a c-plane sapphire substrate. After the crystal growth, we fabricated QCL sample with single metal plasmon waveguide structure. Lasing spectrum was obtained at 5.39 THz measured under pulsed current injection at 5.8K. The threshold current density Jth and the threshold voltage Vth were 1.75 kA/cm2 and 14.5 V, respectively. We also fabricated similar design GaN/AlGaN QCL by metal organic chemical vapor deposition (MOCVD), and obtained lasing at 6.97 THz. The Jth and Vth of the MOCVD grown QCL were 0.75 kA/cm2 and 27 V, respectively, measured at 5.2 K.
III-nitride semiconductors having huge longitudinal optical phonon energies are promising as materials to solve a problem of "development of operational frequency range (5-12 THz)" on THz-QCLs. In this study, for the purpose of THz lasing from target subband levels, we designed unique quantum cascade (QC) structures whose active regions consisted of two quantum wells (QWs) for one period and the number of wave-functions contributed to lasing is limited to minimum 3 subband levels. (i.e., Pure 3-level laser system). We fabricated THz-QCLs with QC structures of a pure 3- level laser system (100-200 periods) through a radio-frequency molecular beam epitaxy (RF-MBE) and a metal organic chemical vapor deposition (MOCVD) on MOCVD-growth AlGaN/AlN templates grown on c-plane sapphire substrates. Clear satellite peaks in XRD analyses could be observed, indicating that layer structures were stacked with a good periodicity. By comparing data with simulation spectra, it was found that error of film thicknesses were 1-3 %. We observed sharp lasing spectra with peaks at frequencies of ~5.5 THz and ~7.0 THz whose full width at half maximum (FWHM) values were close to those of resolution of FTIR spectrometer, when we tried pulse current injection measurements into THz-QCL devices. We successfully for the first time realized GaN-based THz-QCL devices lasing at almost the same frequencies as the target ones by designing a 2QWs-type QC structure with a pure 3-level laser system. We also successfully achieved lasing at ~5.5 and ~7.0 THz, which are highest reported to date for any kinds of THz- QCLs.
Terahertz quantum cascade laser (THz-QCL) is expected as a compact terahertz laser light source which realizes high output power, quite narrow emission linewidth, and cw operation. We are studying on THz-QCLs using GaAs/AlGaAs and GaN/AlGaN semiconductor superlattices. We demonstrated 1.9-3.8 THz GaAs/AlGaAs QCLs with double metal waveguide (DMW) structures. We developed a low-frequency high-temperature operation QCL (T<160K for 1.9 THz- QCL) by introducing indirect injection scheme design (4-level design) into GaAs/AlGaAs THz-QCLs. Nitride semiconductor is a material having potentials for realizing wide frequency range of QCL, i.e., 3~20 THz and 1~8 μm, including an unexplored terahertz frequency range from 5 to 12 THz, as well as realizing room temperature operation of THz-QCL. The merit of using an AlGaN-based semiconductor is that it has much higher longitudinal optical phonon energies (ELO> 90meV) than those of conventional semiconductors (~ 36 meV). We fabricated high-quality AlGaN/GaN QC stacking layers by introducing a novel growth technique in molecular beam epitaxy (MBE). We fabricated a GaN/AlGaN QCLs with “pure three-level” design and obtained the first lasing action of nitride-based QCL from 5.4-7 THz.
We are studying on terahertz-quantum cascade lasers (THz-QCLs) using III-nitride semiconductor, which is a
material having potentials for realizing wide frequency range of QCL, i.e., 1-15 THz and 1-10 μm, including an
unexplored terahertz frequency range from 5 to 12 THz. GaN-based QCLs also have potential to realize room
temperature operation of THz-QCL. The merit of using an AlGaN-based semiconductor in comparison with GaAs or InP
is that it has much higher longitudinal optical phonon energies (ELO) (> 90meV) than those of conventional GaAs-based materials (~ 36 meV). We designed a GaN/AlGaN QCL that can operates in THz frequency range, and fabricated the GaN/AlGaN QCL devices by using molecular beam epitaxy (MBE). We demonstrated dramatic improvement of
structural properties of QC stacking layers by introducing a novel growth technique "a droplet elimination by thermal
annealing (DETA) method". We have observed inter-subband spontaneous emissions under current injection with peak
frequencies from 1.4 to 2.8 THz from GaN/AlGaN QCL devices. The intensity of the emission was much improved by
fabricating them on a low threading dislocation density (TDD) AlN/AlGaN template prepared by metal-organic
chemical-vapor epitaxy (MOCVD) on a sapphire substrate.
We studied on terahertz-quantum cascade lasers (THz-QCLs) using III-Nitride semiconductors, which are promising materials for the realization of the unexplored frequency range from 5 to 12 THz and the higher temperature operation on THz-QCLs, because these compounds have much larger longitudinal optical phonon energies (> 18 THz) than those of conventional GaAs-based materials (~ 9 THz). Firstly, we showed clearly that it is possible to design a GaN-based quantum cascade (QC) structure which operates in the THz range in which population inversion can be obtained, by performing numerical calculations based on a self-consistent rate equation model. Secondly, we succeeded in the stack of QC structure with a large number of periods and the drastic improvement of structural properties of QC structure, by introducing a new growth technique named "a droplet elimination by thermal annealing (DETA)" in which utilized the differences of the properties between metals (Al, Ga) and Nitrides (AlN, GaN) into molecular beam epitaxy. Finally, we for the first time successfully observed spontaneous electroluminescence due to intersubband transitions with peaks at frequencies from 1.4 to 2.8 THz from GaN/AlGaN QCL devices fabricated with using the DETA technique grown on a GaN substrate and a metal organic chemical vapor deposition (MOCVD)-AlN template on a sapphire substrate. In this paper, we demonstrate recent achievements on the quantum design, fabrication technique, and electroluminescence properties of GaN-based QCL structures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.