Bistatic radar target tracking is challenging due to the fact that the measurements are nonlinear functions of the Cartesian state. The converted measurement Kalman filter (CMKF) converts the raw measurement into Cartesian coordinates prior to tracking and is superior to the extended Kalman filter for certain problems. The challenges of CMKF are debiasing the converted measurement and approximating the converted measurement error covariance. Due to no closed form of biases, we utilize the second-order Taylor series expansion of the conventional measurement conversion to find the conversion bias in bistatic radar and propose the unbiased converted measurement (UCM). In order to decorrelate the converted measurement error covariance from the measurement noise, we evaluate the covariance using the prediction in Bayesian recursive filtering, designated as the decorrelated unbiased converted measurement (DUCM). Monte Carlo simulations show that the DUCM is unbiased and consistent, and the DUCM filter exhibits an improved performance compared with the conventional CMKF and the UCM filter in bistatic radar tracking.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.