Fourier ptychographic microscopy has the advantages of large field of view, high resolution and quantitative phase imaging, which magically compromises contradiction between the resolution and the field of view. In the traditional reconstruction process, the spectrum is always updated partly step by step, which would result in error accumulation. In order to improve the reconstruction precision, based on its working principle, the paper proposes a global iterative optimization method, which updates the spectrum holistically. And experimental results demonstrate its better performance and effectiveness.
Fourier ptychographic microscopy is a newly developed method to extend the resolution beyond the conventional limit defined by a microscope optics. The positions of the LED sources strongly determine the quality of the reconstructed result. In this paper, we propose a new positional misalignment correction method, which is based on the distribution of the incident LED intensity. When the LED matrix panel has displacements along x-axis, or y-axis, the incident LED intensity distribution which propagates to the sample plane will be changed. An optimization method to correct positional misalignment is introduced, as well as the light intensity correction. Simulation has been performed to verify the effectiveness of the proposed method, which demonstrates that the reconstructed result shows a better quality.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.