We propose a new method to investigate fast wavelength switching, which consists of control circuit, driving circuit and 8-channel DFB laser array using reconstruction-equivalent-chirp technique. The control circuit is in charge of selecting required lasers to switch wavelength, the driving circuit supply adjustable and stable direct current to the DFB laser arrays. Experimental results show that wavelength switching time of 8 channels is about 500ns and stability of laser output is promised.
KEYWORDS: Switching, Field programmable gate arrays, Fast packet switching, Clocks, Oscilloscopes, Control systems, Switches, Semiconductor lasers, Signal generators, Digital electronics
In order to achieve the intelligent controlling of DFB laser array, this paper presents the design of an intelligence and high precision numerical controlling electric circuit. The system takes MCU and FPGA as the main control chip, with compact, high-efficiency, no impact, switching protection characteristics. The output of the DFB laser array can be determined by an external adjustable signal. The system transforms the analog control model into a digital control model, which improves the performance of the driver. The system can monitor the temperature and current of DFB laser array in real time. The output precision of the current can reach ± 0.1mA, which ensures the stable and reliable operation of the DFB laser array. Such a driver can benefit the flexible usage of the DFB laser array.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.