In recent years, the gain cell based eDRAM has got more and more interest for high density and logic-compatible embedded memories. It is widely used in image processing and biomedical applications as it can work as a dual-port memory with a small area. A hidden refresh scheme is proposed for the dual-port gain cell eDRAM to avoid the conflict between accesses and internal refreshes and to increase the data efficiency. By dividing the read, write and refresh operations into several stages, a hidden refresh controller controls to perform the dual-port access and internal refresh in parallel without any conflict. The hidden refresh scheme is integrated into a dual-port gain cell eDRAM of 256X256 in SMIC 130nm logic process. Simulation results demonstrate that the external accesses are performed without delay and dual-port data availability can reach 100%. And the access cycle time is only increased by about 10.9% compared with traditional distribution refresh method. The refresh power of the eDRAM is about 60μW/Mbit at 85°C.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.