The altitude of atmospheric medium involved in atmospheric optics has a height range of 100km, and the most complicated variation of atmospheric properties is mainly in the atmospheric boundary layer (ABL). The variety of ABL height is of considerable significance to the distribution of aerosol, cloud, and other processes. Since the research of Chinese marine ABL analysis is limited, in this study, we improved the algorithm by using 532nm total attenuated backscattering (TAB) for retrieving atmospheric boundary layer height (ABLH) from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and verified the results gained from micro-pulse lidar (MPL) and radiosonde over the South China Sea. Finally, we used the validated ABLH algorithm model to retrieve the ABLH against CALIPSO data from Mar. 2018 to Feb.2019 over the South China Sea.
Above-low-cloud aerosol (ACA) has important impacts on low clouds bellow. Based on the satellite data from 2007 to 2010, this study analyzed the relationship between ACA optical depth (OD), ACA occurrences and low cloud integrated color ratio (CR) over tropic Atlantic region where ACA frequently occurs. The results show that, the integrated attenuated CR (IACR) of low cloud is about 30%-50% larger over smoke region in smoke outbreak seasons than other regions or seasons. However, the IACR of low cloud over dust region shows small difference between dust outbreak seasons and other seasons. It indicates that above-low-cloud smoke aerosol can introduce stronger color effect than dust. The integrated corrected CR (ICCR) of low cloud tends to decrease with increasing above-cloud dust OD, while the low cloud ICCR shows weak relationship with above-low-cloud smoke OD. And, the above-low-cloud dust aerosol could introduce strong microphysics effect, that is, the low cloud droplet size may decrease with increasing burden of dust aerosol above.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.