Synthetic data is commonly used to assess the performance of Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) systems modeling the OC space in question. In this work we demonstrate that the use of an informed sampling technique compared to an uninformed sampling approach can efficiently assess the “OC gap” between train and test OC spaces as the gap narrows. To demonstrate the effectiveness of an informed sampling approach, SAR ATR experiments are conducted as a function of how representative the train distribution of OCs are compared to the test OC space given a variety of challenging OC scenarios. Algorithm performance is assessed over a series of experiments given discrepancies between azimuth and depression angle of the sensor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.