Cassette based computed radiography systems have continued to evolve in parallel with integrated, instant readout digital radiography DR systems. The image quality of present day computed radiography systems is approaching its theoretical limits but is still significantly inferior to DR. Our overall aim is to identify the fundamental limitations in computed radiography performance. This will provide a basis for the development of new approaches to improve photostimulable phosphor based computed radiography systems based either on cassettes or integrated systems. In this fundamental work flare has been evaluated by use of the disk transfer function. It is found that there is a significant, previously unnoticed low frequency drop in the modulation transfer function. However, it is not yet fully resolved if the measured flare is due solely to scattering of light in the readout system or whether scattered x-rays in the imaging plate cassette enhance it. Further work is necessary to resolve this issue. The likely effect of flare on proposed new computed radiography methods is also explored.
A theory of the imaging behavior of structured phosphor layers is developed based on linear analysis and Carlo model modeling and tested by comparison with experiments. The experiments include: the evaluation of Swank factor; modulation transfer function (MTF) measured as a function of spatial frequency f on CsI phosphor layers of different thicknesses and optical properties (e.g. presence or absence of reflective backing layer). These measurements on structured screens were used to establish phosphor parameters (e.g. absorption and scattering lengths). In addition, MTF(f), Wiener noise power spectra [NPS(f)] and detective quantum efficiency [DQE(f)] measurements were obtained from the literature for x-ray image intensifiers and indirect conversion flat panel detectors constructed using CsI layers. These results were compared with the theory using the previously established phosphor parameters. The effects of K-fluorescence and depth dependence of the MTF on DQE (i.e. Lubberts' effect) were investigated.
Large area flat panel solid-state detectors are being studied for digital radiography and fluoroscopy. Such systems use active matrix arrays to readout latent charge images created either by direct conversion of x-ray energy to charge in a photoconductor or indirectly using a phosphor and individual photodiodes on the active matrix array. Our work has utilized the direct conversion method because of its simplicity and the higher resolution possible due to the electrostatic collection of secondary quanta. Aliasing of noise occurs in current designs of direct detectors based on amorphous selenium ((alpha) -Se) because of its high intrinsic resolution. This aliasing leads to a decrease in detective quantum efficiency (DQE) as frequency increases. It has been predicted, using a previously developed model of the complete imaging system, that appropriately controlled spatial filtration can reduce this aliased noise and hence increase DQE at the Nyquist frequency, fNY. Our purpose is to experimentally verify this concept by implementing presampling filtration in a practical flat panel system. An (alpha) -Se based flat panel imager is modified by incorporating an insulating layer between the active matrix and the (alpha) -Se layer to introduce a predetermined amount of presampling burring. The modified imager is evaluated using standard linear analysis tools, modulation transfer function (MTF), noise power spectra (NPS) and DQE(f), and the results are compared to theoretical predictions.
Large area, flat panel solid state detectors are being investigated for digital radiography and fluoroscopy. These detectors employ an x-ray imaging layer of either photoconductor ('direct' conversion method) or phosphor ('indirect' conversion method) to detect x-rays. In both cases the image formed at the surface of the layer is read out in situ using an active matrix array. Depending upon the resolution of the layer compared to the pixel size, undersampling of the image and hence aliasing may occur. Aliasing is always present regardless of the pixel size in direct detectors based on amorphous selenium because of its high intrinsic resolution. Aliasing gives rise to increased noise which results in reduction of detective quantum efficiency DQE at high spatial frequencies. The aliasing can be reduced or even eliminated by blurring prior to pixel sampling (e.g., by scattering in a phosphor layer). However, blurring, which may be quantified by the spatial frequency f dependent modulation transfer function MTF(f), also has a deleterious effect: the imaging system becomes much more susceptible to noise for example that arising in the charge amplifiers or secondary quantum statistics. Note that in principle, the system MTF can be corrected to any desired values in a digital system thus MTF has no predictive value for the quality of an imaging system, rather it is the DQE(f) which determines the overall signal to noise ratio independently of the MTF enhancement chosen. Nevertheless, determining the ideal level of presampling blurring (i.e., the Presampling Modulation Transfer function) is not straightforward. A problem caused by blurring is that the degree of blurring often depends on the depth of absorption of the x-ray in the imaging layer. In such cases (as pointed out by Lubberts) additional noise is transferred to the image. The predictions of a Lubberts model will be compared with published measurements of DQE for both direct and indirect detectors. A preliminary conclusion, is that blurring by CsI phosphor layers is non-ideal and leads to a significant loss of DQE at high spatial frequencies while no such loss is occurring in (alpha) -Se layers due to the equal MTF (in this case MTF(f) approximately equals 1) at all depths. Thus the only method which appears practical to cause blurring so as to avoid noise aliasing while avoiding the Lubberts depth dependent effect is to have a perfect MTF in the imaging layer and then blur before sampling. Such an approach has been proposed for the direct method based on the use of a partially conducting layer. Theoretical estimates of the final DQE(f) to be expected using this variation of the direct conversion method are produced.
A large area, flat panel solid state detector is being investigated for both digital radiography and fluoroscopy. The detector employs amorphous selenium (a-Se) to detect x- rays. The charge image formed on the surface of the a-Se is read out in situ using an active matrix array. A theoretical analysis of the spatial frequency dependent detective quantum efficiency (DQE) is performed. Because of the very high intrinsic resolution of a-Se, the detector is inherently undersampled and aliasing is always present. An interpretation of DQE(f) for the undersampled a-Se detector will be given. The analysis shows that the main factors, besides the quantum efficiency of the a-Se layer, affecting DQE(f) are: (1) aliasing; (2) gain fluctuation noise of a- Se, i.e., the Swank factor of a-Se; (3) electronic noise which prevents quantum noise limited operation at low exposure levels such as those used in fluoroscopy and (4) temporal response which causes a reduction in noise by averaging. The validity of the theoretical model was confirmed experimentally using our prototype detector with the Swank factor being established using pulse height spectroscopy. The model was then applied to three important x-ray imaging applications: mammography, chest radiography and fluoroscopy. The results show that the most important strategy for maximizing DQE(f) is to increase the pixel fill factor which can be unity using specialized techniques Methods for reducing aliasing in the detector will be described.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.