Recently, a new strategy used to achieve high operation temperature (HOT) infrared photodetectors including cascade devices and alternate materials such as type-II superlattices has been observed. Another method to reduce detector’s dark current is reducing volume of detector material via a concept of photon trapping detector.
In this paper, the performance of a novel HOT detector designing so-called interband cascade type-II MWIR InAs/GaSb superlattice detectors is presented. Detailed analysis of the detector’s performance (such as dark current, RA product, current responsivity, and response time) versus bias voltage and operating temperatures (220 – 400 K) is performed pointing out optimal working conditions. At present stage of technology, the experimentally measured R0A values of interband cascade type-II superlattice detectors at room temperature are higher than those predicted for HgCdTe photodiodes. It is shown that these novel HOT detectors have emerged as competitors of HgCdTe photodetectors.