Metamaterials and, more recently, metasurfaces have been the focus of extensive research activities, as they play an ever-increasing role in the design of integrated photonics platform. Stacked metasurfaces are also currently investigated as an alternative route to design devices with enhanced optical properties or to propose exotic effects that cannot be achieved in single-layered metasurfaces. In this study, we theoretically show and experimentally demonstrate that stacked Metallic Wire-Grid Metasurfaces (MWGMs) can exhibit polarisation-induced Fano resonances owing to the basic polarisation properties of MWGM. We first present an original model based on an extended Jones formalism together with a circulating field approach, which reveals the underlying principle of polarisation-induced Fano resonances. Then, an experimental proof of concept was realised in the THz region to support the theoretical investigations using commercially available MWGMs, which shows good agreement with the model’s numerical results.
Metamaterials have emerged as the basis of a novel optoelectronic platform operating in the terahertz (THz) range, due to their versatility and strong light-matter interaction. The necessary design of efficient modulators and detectors requires a detailed investigation of metamaterial resonances and their interplay with an active medium, e.g. graphene. An aperture-SNOM (a-SNOM) system based on picosecond THz pulses was used to investigate the spectral characteristics of a set of lithographically tuned metamaterial coupled resonators. This approach allowed the mapping of the supported E-field of each resonator a few microns from the device plane, yielding bonding and antibonding modes reminiscent of electromagnetic induced transparency.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.