Estimating head pose of pedestrians is a crucial task in autonomous driving system. It plays a significant role in many research fields, such as pedestrian intention judgment and human-vehicle interaction, etc. While most of the current studies focus on driver’s-view images, we reckon that surveillant images are also worthy of attention since more global information can be obtained from them than driver’s-view images. In this paper, we propose a method for head pose estimation from surveillant images. This approach consists of two stages, head detection and pose estimation. Since the head of pedestrian takes up a very small number of pixels in a surveillant image, a two-step strategy is used to improve the performance in head detection. Firstly, we train a model to extract body region from the source image. Secondly, a head detector is trained to locate head position from the extracted body regions. We use YOLOv3 as our detection network for both body and head detection. For head pose estimation, we treat it as classification task of 10 categories. We use ResNet-50 as the backbone of the classifier, of which the input is the result of head detection. A serial of experiments demonstrate the good performance of our proposed method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.