Monolithic integration of III–V materials and devices on CMOS compatible on‐axis Si (001) substrates enables a route of low‐cost and high‐density Si‐based photonic integrated circuits. Inversion boundaries (IBs) are defects that arise from the interface between III–V materials and Si, which significantly lowers the quality of III–V materials on Si. Here, a novel technique to achieve IB‐free GaAs monolithically grown on on‐axis Si (001) substrates by realizing the alternating straight and meandering single atomic steps on Si surface has been introduced via all-molecular beam epitaxy approach without the use of double Si atomic steps, which was previously believed to be the key for IB‐free III–V growth on Si. The periodic straight and meandering single atomic steps on Si surface are results of high‐temperature annealing of Si buffer layer. As a demonstration, an electrically pumped InAs quantum‐dot laser has been fabricated based on this IB‐free GaAs/Si platform with a maximum operating temperature of 120 °C. These results can be a major step towards monolithic integration of III–V materials and devices with the mature CMOS technology.
KEYWORDS: Data storage, Scanning transmission electron microscopy, Crystals, Chemical species, Transmission electron microscopy, Annealing, Diffraction, Crystallography, Temperature metrology, Tellurium
The crystallization process and crystal structure of the phase change material TiSbTe alloy have been successfully established, which is essential for applying this alloy in phase change memory. Specifically, transmission electron microscopy (TEM) analyses of the film annealed in situ were used in combination with selected-area electron diffraction (SAED) and radial distribution function (RDF) analyses to investigate the structural evolution from the amorphous phase to the polycrystalline phase. Moreover, the presence of structures with medium-range order in amorphous TST, which is beneficial to high-speed crystallization, was indicated by the structure factors S(Q)s. The crystallization temperature was determined to be approximately 170°C, and the grain size varied from several to dozens of nanometers. As the temperature increased, particularly above 200°C, the first single peak of the rG(r) curves transformed into double shoulder peaks due to the increasing impact of the Ti–Te bonds. In general, the majority of Ti atoms enter the SbTe lattice, whereas the remainder of the Ti atoms aggregate, leading to the appearance of TiTe2 phase separation, as confirmed by the SAED patterns, high-angle annular dark field scanning transmission electron microscopy (HAADFSTEM) images and the corresponding energy-dispersive X-ray (EDX) mappings.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.