In this paper, we propose a wide-range LFO estimation and correction procedure for a coherent optical FBMC/OQAM system. Using a deliberately designed preamble, this method can not only precisely estimate the fractional frequency offset, but also effectively implement the estimation of the integer frequency offset. After a correction of the frequency offset, the final channel responses are acquired by inter-frame averaging and cubic spline interpolation. We investigated the accuracy and stability of this method under the influence of fiber dispersion and nonlinearity. The results from numerical simulation experiments show that the proposed low complexity technique is fully applicable to fiber channel and can significantly improve the performance of CO-FBMC/OQAM systems with respect to the bit-error-rate.
A novel double-clad As2Se3 chalcogenide photonic crystal fiber is proposed and the slow light via stimulated Brillouin scattering is theoretically investigated. The Brillouin gain spectrum by taking into account the high-order acoustic modes is analyzed. The simulated results indicate that the slow light can be tuned by varying the air filling fraction in the inner cladding. The time delay upto 1120ns can be achieved with 1-m-long fiber when pumped with 10mW. But these features of slow light are less affected with the change of the air filling fraction in the outer cladding.
Intermodal Brillouin frequency shift and Brillouin gain spectrum in few-mode fibers are investigated by full vectorial finite element method, and the influences of pump power on the time delay and pulse broadening factor are also simulated. The simulation results show that Brillouin gain of intermodal stimulated Brillouin scattering varies with different modes pairs. Time delay increases with increasing of pump power. Pulse broadening factors decrease with the input signal pulse width but increase with the input pump power. Optimized results show that time delay of LP01 - LP01mode pair is 213.2ns, and the corresponding pulse broadening factors is 1.126.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.