In this paper, the design, development and realization of a high bandwidth integrated driver in a high speed opto-electrical transmitter with high performance and a compact size is investigated. Using a differential fractionally spaced transversal filter topology, the circuit consists of an input and output buffer, variable gain amplifiers and multi-tap delay cells. In this work, micro-strip transmission lines are utilized as the delay cells, while adaptive gilbert cells are employed as the variable gain amplifiers in the adaptive transmitter to improve the system-level performance by compensating the frequency-dependent channel and package loss. Both frequency-domain and transient simulation of the high speed transmitter are analyzed and compared, in order to validate the integrated electrical models and interconnect characteristics.
Optical spectrum analysis has been widely used in numerous areas such as optical network performance monitoring, materials analysis and medical research. Although there are many kinds of spectrometers, on-chip spectrometer could be a promising alternative with apparent size and weight advantages,. Silicon-on-Insulator(SOI) waveguide technology offers means to miniaturize the different parts of the spectrometer, even if often at the cost of performance and scalability. In this work, a cascaded waveguide structure was proposed for a spectrometer, with a spectral range from 1150nm to 1550nm, which corresponds to the second overtone region of the NIR absorption, and a resolution of 2 nm for performing spectrum derivation. The spectrometer is realized by a SOI cascaded Mach-Zehnder Interferometer and four SOI arrayed waveguide gratings. The cascaded MZI based coarse wavelength division de-multiplexers was employed for the first stage of the spectrometer and was used to disperse the signal into four channels. The output signals of the four channels are further dispersed into eight channels by the second stage AWG structures. We further implemented the thermo-optic modulation to achieve a higher spectral resolution. The output channel wavelengths of the spectrometer are modulated (with a wavelength shift 2 nm) by the embedded heater to obtain the first order derivative spectra of the input optical signal. We present the theory, modeling, and experimental demonstration of the thermally tuned spectrometer. With respect to the computer simulation and device characterization results, the 400nm spectral range and the 2nm resolution have been demonstrated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.