The structure and working mechanism of a photoconductive photodetector are compared with a p+-i-n+ (PIN) photodiode
and a metal-semiconductor-metal (MSM) photodetector which is regarded as two back-to-back Schottky barrier
photodiodes. Because a photoconductive photodetector has the features of high critical field strength, especially no
junction capacitance and no dead zone, it has the main merits of high signal-noise ratio, ultrafast response and high
quantum efficiency. We fabricate two photoconductive photodetectors in a lateral configuration on a semi-insulating (SI)
gallium arsenide (GaAs) wafer, which wavelength range of response is from UV to 1.73μm due to two-photon
absorption. It is shown by the volt-ampere characteristics curve that the dark leakage current of 30μm-gap SI GaAs
photoconductive photodetector at a bias field of 66 V/cm is less than 1.2 μA. Our experiment has demonstrated that SI
GaAs photoconductive photodetectors are noteworthily superior to high-speed Si PIN photodetectors to measure
ultrashort pulse lasers with the properties of ultrafast response, ultrawide spectral range, high signal-noise ratio and ease
of fabrication.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.