In recent years, ocean front tracking is of vital importance in ocean-related research, and many algorithms have been proposed to identify ocean fronts. However, all these methods focus on single frame ocean-front classification instead of ocean-front tracking. In this paper, we propose an ocean-front tracking dataset (OFTraD) and apply GoogLeNet inception network to track ocean fronts in video sequences. Firstly, the video sequence is split into image blocks, then the image blocks are classified into ocean-front and background by GoogLeNet inception network. Finally, the labeled image blocks are used to reconstruct the video sequence. Experiments show that our algorithm can achieve accurate tracking results.
High-resolution ocean remote sensing images are of vital importance in the research field of ocean remote sensing. However, the available ocean remote sensing images are composed of averaged data, whose resolution is lower than the instant remote sensing images. In this paper, we propose a very deep super-resolution learning model for remote-sensing image super-resolution. In our research, we target satellite-derived sea surface temperature (SST) images, a typical kind of ocean remote sensing image, as a specific case study of super-resolution on remote sensing images. In this paper, we propose a novel model architecture based on the very deep super-resolution (VDSR) model, to further enhance its performance. Furthermore, we evaluate the peak signal-to-noise ratio (PSNR) and perceptual loss of the model trained on the natural images and SST frames. We designed and applied our model to the China Ocean SST database, the Ocean SST database, and the Ocean-Front databases, all containing remote sensing images captured by advanced very high resolution radiometers (AVHRR). Experimental results show that our model performs better than the state-of-the-art models on SST frames.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.