In this work, 4H-SiC avalanche photodiodes (APDs) were fabricated and investigated both in linear and Geiger modes for high-temperature ultraviolet (UV) detection applications. With the temperature varying from 300 K to 425 K, the avalanche breakdown voltage of our 4H-SiC APDs keeps very stable with a small temperature coefficient of <8 mV/K. In the Geiger mode, the impact of temperature on the output signal pulse height, dark count rate (DCR) and single-photon-detection efficiency (SPDE) is analyzed from the aspect of device physics. At a fixed bias voltage of 166.5 V, the DCR and SPDE at 300 K, 375 K and 425 K are 5.3 Hz∙μm-2 /15.6%, 11.8 Hz∙μm-2 /17% and 16.5 Hz∙μm-2 /15.7%, respectively. The results in this work demonstrate that our fabricated 4H-SiC APDs can operate stably and reliably under the conditions with a high temperature.
In this letter, an avalanche photodiode (APD) for ultraviolet detection was fabricated on a 4H-SiC epi-layer with a radius of 150 µm. By adopting passive quenching method, the impact of quenching resistor on single photon detection performance of the fabricated APD was investigated for the first time. It is found that both dark count rate (DCR) and single photon detect efficiency (SPDE) were reduced with the increasing quenching resistance. When the DCR fixed at 5 Hz/μm2 , the SPDE is 7.1% /6.7%/5.4%/5.2% corresponding to the quenching resistance of 10/20/50/100 kΩ. Variation of the SPDEs can be ascribed to the changing death time by comparing the photon counting spectra with various resistors. The obtained results have built up a good basis for the design of SiC APD single photon detection.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.