In the process of actual measurement and analysis of micro near infrared spectrometer, genetic algorithm is used to select the wavelengths and then partial least square method is used for modeling and analyzing. Because genetic algorithm has the disadvantages of slow convergence and difficult parameter setting, and partial least square method in dealing with nonlinear data is far from being satisfactory, the practical application effect of partial least square method based on genetic algorithm is severely affected negatively. The paper introduces the fundamental principles of particle swarm optimization and support vector machine, and proposes a support vector machine method based on particle swarm optimization. The method can overcome the disadvantage of partial least squares method based on genetic algorithm to a certain extent. Finally, the method is tested by an example, and the results show that the method is effective.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.