The hybrid gas phase and solid state laser shows its inherent advantages in heat management and high efficiency and compactness, with DPAL becoming a perfect example. However, this kind of laser is limited by concern, for example, narrow absorption linewidth and a series of problems resulting from chemical reactions. As a matter of fact, Prof. Krupke proposed some hybrid gas phase and solid state lasers before DPAL, while they were chemically unfavored. As a newest type of hybrid gas phase and solid state laser, diode pumped nanoparticle gas laser (DPNGL) is a potential candidate in high power laser field. We put forward a rate equation model for Yb3+ doped nanoparticle gas laser, and scattering of nanoparticles at the nano scale is included in this model. In addition, modifications of fluorescence lifetime and laser emission and pump absorption cross section are coupled into this model. Some vital factors are simulated and discussed. The results obtained from the modeling show that the influence of scattering is weak, and the Yb3+ concentration is not necessarily high to achieve a good laser performance. The results are sufficiently positive for DPNGL to be a promising high power laser.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.