Due to weathering and external forces, solar panels are subject to fouling and defects after a certain amount of time in service. These fouling and defects have direct adverse consequences such as low-power efficiency. Because solar power plants usually have large-scale photovoltaic (PV) panels, fast detection and location of fouling and defects across large PV areas are imperative. A drone-mounted infrared thermography system was designed and developed, and its ability to detect rapid fouling on large-scale PV panel systems was investigated. The infrared images were preprocessed using the K neighbor mean filter, and the single PV module on each image was recognized and extracted. Combining the local and global detection method, suspicious sites were located precisely. The results showed the flexible drone-mounted infrared thermography system to have a strong ability to detect the presence and determine the position of PV fouling. Drone-mounted infrared thermography also has good technical feasibility and practical value in the detection of PV fouling detection.
In order to get high spatial resolution hyperspectral data, many studies have examined methods to combine spectral information contained in hyperspectral image with spatial information contained in multispectral/panchromatic image. This paper developed a new hyperspectral image fusion method base on the non-negative matrix factorization (NMF) theory. Data sets obtained by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) was used to evaluate the performance of the method. Experimental results show that the proposed algorithm can provide a good way to solve the problem of high spatial resolution hyperspectral data shortage.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.