Silicone and acrylic elastomers have received increased attention as dielectric electroactive polymer (EAP) materials for actuator technology. The goal of this work was to develop and characterize a new class of silicones (DC3481) and to compare it with acrylic elastomers. The influence of various types of hardeners, hardener concentration, prestrain and high dielectric organic fillers was studied by mechanical, electrical and electromechanical experiments. Furthermore the temperature dependence and the viscoelastic properties were investigated. The results show that by changing type and concentration of hardener, the Young's modulus can be varied. In order to increase the dielectric constant, the silicone was blended with organic materials. Compared to acrylic elastomers, this new class of silicone elastomers has the advantage of a constant stiffness over a wide range of temperature and a lower viscosity that results in a higher response speed of the actuator.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.