Cryogenic radiometer is considered as the international benchmark for optical power measurement, which requires the core light radiation receiving device (cavity) has high absorption coefficient over 0.9999 at presented. In this paper, we have developed a new cavity are made of oxygen-free high-conductivity copper (OFHC) cylinder and coated with nickel-phosphorus (NiP) black paint. The cavity absorptance has been experimentally evaluated at different black paints and different structures. The result shows that the inclined bottom cylindrical cavity blackened with nickel-phosphorus black paint achieves an absorptance up to 0.9999964±0.000005; The most significant improvements in uncertainty arise from the enhanced characteristics of the cryogenic radiometer including its higher cavity absorptance and reduced non-equivalence effects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.