This Conference Presentation, “Single molecule-doped crystalline nanosheet for delicate photophysics study and Gaussian mode single-photon emission,” was recorded for the Photonics Asia 2020 Digital Forum.
Quantum emitters, such as q-dots and dye molecules, in the immediate vicinity of plasmonic nanostructures, resonantly excite surface plasmon-polaritons (SPPs) under incoherent pump. The efficiency in the excitation of SPPs per emitter increases with the number of the emitters, because the SPP field synchronizes emission of the coupled emitters, in analogy with the superadiance (SR) in free space. Using fully quantum mechanical model for two emitters coupled with a metal nanorod, we predict up to 15% increase in the emission yield of single emitter compared to only one emitter near the nanorod. Such emission enhancement is stationary and should be observable even with strong dissipation and dephasing under incoherent pump of emitters. Solid-state quantum emitters with blinking behaviors may be utilized to demonstrate such plasmonic SR emission enhancement. Plasmonic SR may find implications in the excitation of nonradiative modes in plasmonic waveguides, in lowing threshold of plasmonic nanolasers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.