In this paper, far field speckle contrast from a broad area laser diode is measured. The intensity of the incident
laser light onto a diffuser is controlled by using polarizer or adjusting input current. A rectangular aperture
close to diffuser is used to select different parts of laser light field as illumination spot. The speckle contrast
measured for different illuminationspots has no significant change. When the laser diode operates at its typical
power output condition, the speckle contrast measured approximately equals 1, while the speckle contrast is
depressed tremendously when the laser diode operates with low driving current.
Laser speckle degrades image quality in laser displays. The speckle contrast needs to be correctly evaluated in designing laser displays. In this paper, a moving small diffuser for speckle reduction is set up for laser projection display system. We demonstrate the effect of the projection lens on speckle contrast under the scenarios of free-space and image geometry measurement with different configurations. The results show the speckle contrast in free-space geometry is measured as about 74.16% without projection lens and 60.74% with projection lens for the static diffuser, which are reduced to 2.75% when the diffuser moves for both with and without projection lens. In the imaging geometry, the moving diffuser reduces the speckle contrast from 83.22% to 9.61% without projection lens, and from 98.7% to 36.59% with projection lens.
An optical system model has been built up for evaluating de-coherence performance of Mie scattering by using ZEMAX software. The optical system consists of a linearly polarized laser source of the wavelength 0.6328 micrometer, the interferometer configuration with a double-arm beam path, the light pipe with the particles solution of variable parameters including the refractive index, the particle size and the particle concentration, and the detectors. Seven types of particles with different refractive index have been used as scattering medium. The de-coherence performance and the light energy loss have been calculated for solutions with different particle concentration and dimension. The calculated results indicate that the de-coherence performance can be improved by increasing the particle concentration in solution and the particle size. The improvement of the performance is more notable as the particle refractive index becomes higher. The dependence of the light energy loss caused by Mie scattering on the refractive index and size of the particle, and the particle concentration in solution is obtained.
In this work, a multilayered dielectric film and metallic film are used as reflecting surface to fabricate light
pipe. Linearly polarized laser beam with wave length of 532nm enters into the light pipe. After
multi-reflection process, laser beam come out from the light pipe. We have found that the polarization state of
linearly polarized incident light after reflection are different for the light pipe coated with metal and
multilayered dielectric film. We also found a distributed polarization characteristic in the output optical field.
The polarization degree has been simulated by using ZEMAX software. Laser speckle contrast from a glass
diffuser is measured to exam the simulated result.
A speckle reduction apparatus is proposed by using an optical interferometer to introduce temporally changing
interference fringes. With the help of the vibration of a mirror, diverse interference fringes and speckle patterns are
added together in the intensity basis during the exposure time of the CCD camera, which result in a summed speckle
image having lower speckle contrast. Experimentally, we have demonstrated the speckle reduction efficiency by this
method, and compared with another approach by only using the modulation beam. The obtained speckle contrast is 0.66
after using both the modulation beam and the reference beam, which is lower than the 0.77 speckle contrast by only
using the modulation beam. We conclude that the introduction of interference fringes helps the speckle reduction.
There have two ways to observe speckle, free space and image space. We introduced the factors impact speckle contrast
in a speckle characterization system and established an equivalent relation between image space speckle characterization
and free space speckle characterization, validating the equivalent relation through experiments. The experimental results
show that if the equivalent relation come into existence, the speckle contrast measured in image space match well with it
in free space. At last we have discussed the speckle in a projection system with a rough surface inside and given the
compound speckle measuring method.
An electroactive polymer (EAP)-based MOEMS spatial light modulator (SLM), which shows high reliability and fast response speed, is reported in this work. The reliability is achieved by designing the SLM without direct contact between electrodes and deformable EAP surface; while the fast response speed is obtained by optimizing the microstructure of the EAP material. The concept of SLM, material optimization approach, fabrication processes, as well as characterization methods, are described. The SLM is driven by relatively low voltage, which is 200 V dc and 60 V ac and the response time is 35 μs. The manufactured SLM shows no degradation or breakdown after millions of actuation cycles, indicating a good reliability of the device.
We report a polymer based multiple diffraction modulator, in which PDMS (polydimethylsiloxane) is utilized as the
actuation material, for speckle reduction. The properties of the PDMS are characterized based on its response time and
deformability, which are the key properties concerned in this work. The structure dependent properties of PDMS are
discussed. Using the described technique, the PDMS satisfy the system demand.
The modulator is used to create real-time diffraction patterns by dynamic gratings formed by flexible PDMS. The
diffracted light passes through a diffuser, which is placed after the modulator, and induces speckle patterns on the screen.
Speckle-reduction is achieved by adding the time-varying speckle patterns in the integration time of the detector. It is
observed that using the modulator which has two gratings, the speckle contrast ratio reaches to 50%, which shows fair
agreement with the simulation.
An array of diffraction gratings and a Random Phase Plate (RPP) are used to suppress laser speckle effect. Dynamic
diffraction spots are generated on the surface of the RPP, after which the scattering lights are perceived by a detector.
Speckle Contrast Ratio (CR) and Number of Independent Speckle Patterns (NISP) with different gratings rotation
orientations (θ), gratings frequencies (grooves per millimeter: f), diameters of laser beam (D), and distances between the array of diffraction gratings and the RPP (Z) are calculated based on ZEMAX simulations, and an optimized model is proposed.
Barker binary phase code of maximum length 13 has previously been used for speckle reduction in line-scan laser
projectors, and a speckle contrast factor decreased down to 13% has been achieved. In this article, Barker-like
binary phase codes of length longer than 13 are used at an intermediate image plane. It is shown by theoretical
calculation that much better speckle reduction with speckle contrast factor up to 6% can be achieved by using
longer binary phase codes other than the Barker code. Preliminary experimental results are also presented
indictaing good speckle reduction.
It has been suggested to use Hadamard matrices H(M) of order M for speckle reduction in laser based projection displays
by creating a set of M two-dimensional phase masks from rows or columns of the H(M) and introducing them sequentially into the intermediate image plane of the laser projector. The speckle contrast reduction can reach M-1/2. In
this paper, we have analyzed the contrast reduction. The result presents that any matrices can be used to form phase mask
as long as its columns are orthogonal to each other, such as the parts of columns of Hadamard matrix. The speckle contrast reduction is determined by the number of projection resolution elements lying in single camera resolution
element. To get high quality image with low speckle contrast reduction by Hadamard matrix, its order should be as high
as possible. However, it is impossible to implement by vibrating diffuser with high order due to the large vibration
amplitude. The motionless time-vary diffuser with Hadamard matrix phase pattern based on MEMS technology and
Electro-optical effect can be a good choice.
The high-refractive index contrast (▵n ~0.65 as compared to silicon oxide) of Tantalum pentoxide (Ta2O5) waveguide
allows strong confinement of light in waveguides of sub-micron thickness (200 nm). This enhances the intensity in the
evanescent field, which we have employed for efficient propelling of micro-particles. The feasibility of opto-fluidics
sorting of different sized micro-particles based on their varying optical propulsion velocity is suggested. Optical
propulsion of fixed red blood cells (RBC) with velocity higher than previously obtained is also reported. The optical
propulsion velocities of RBC in isotonic solution (0.25 M sucrose) and water have been compared.
We report on device properties of tunable spatial light modulators for high-resolution optical applications by a novel
fabrication process. Thin polydimethylsiloxane (PDMS) films (4ìm-13ìm) were sandwiched between a flexible gold
film(50nm) and a rigid substrate with a comb-like electrode either by compression molding or spin coating. By applying
voltage between the upper gold film and underlying electrode, the initial plane PDMS surface changes into a form of
grating. Far-field scattering pattern with high order light components was observed by illumination at the continuously
reflective gold film with laser beam. Characterization was done by measuring the grating profile of the PDMS and the
response time. The PDMS deformation was demonstrated to increase with driving voltage. The deformation for 6ìm
thick PDMS is measured around 100nm when driving voltage is applied as 230V. Modeling and simulation of the
modulator electro-mechanical behavior was done for varies structure design. The simulation results showed fair
agreement with the experimental results. The response time, which defines how fast the PDMS response to the applied
voltage, was measured as a function of the driving voltage. The measured rise time is around 1 micorseconds and the fall
time is around 0.2 microseconds.
A high-visibility infrared array emitter for identification and display screen has been demonstrated. The silicon-based MEMS Infrared emitter was fabricated on silicon-on-insulator (SOI) wafer. The infrared emitter cell can be operated at 1100K with a total power of 2.5W, and the modulation frequency can reach to 50Hz at 50 modulation depth. The Infrared array emitters consist of 1*2, 2*2 and 3*3 emitter cells, respectively, which can be made as an infrared indicator or display screen for object identification and information displaying with a recognition ranges determined by input power. The experiments shown that due to the problems of structure and stress, the modulation frequency and lifetime of the infrared array emitter were reduced with increasing array dimension.
In spin electronic devices, passing a spin-polarized current through the device is a better way to switch the magnetic
configuration than applying an external magnetic field with an external current line, because there are several drawbacks
associated with the use of external magnetic fields in terms of energy consumption and the risk of crosstalk. One good
method is using a current to induce domain wall motion from a constriction in a spin-valve structure, which generates
much interest in the case of spin-dependent electron transport across a nanocontact or a nanoconstriction. The samples
are fabricated on a SiO2/Si substrate using electron beam lithography and a lift-off technique. Electron beam lithography
was used to define the nanocontact structure and radio frequency magnetic sputtering with pure Ar was used to deposit
an Al50Fe50 alloy layer about 30 nm thick and an Au cap-layer about 2 nm thick. Ultrasonic assisted lift-off in acetone is
used to obtain the wire and the constriction. The I-V measurement is performed at room temperature without applied
magnetic field. A sharp drop in resistance was observed in the 50-nm-wide nanocontact, which is attributed to the
removal of the domain wall from the contact by the reflection of spin polarized electron. In the low resistance state, no
domain wall is pinned at the contact, while in the high resistance state the presence of a domain wall must be responsible
for the additional resistance, which is the domain wall resistance.
When wafer with patterned Al connections will be machined by wet etching as subsequent microfabrications, silicon
nitride (SiN) is used as passivation and mask layer. We use low temperature deposition process, e.g., plasma-enhanced
chemical vapor deposition (PECVD), for depositing SiN. What we experienced is that the wet etching by using
Tetramethyl Ammonium Hydroxide (TMAH-water) solution leads the failure of micromachining MEMS sensors and
actuators. Damage of aluminum connection by the etching solution is found as the killer reason. In this paper, we have
investigated the etching of Al in different TMAH solutions. The result shows that due to deposition of SiN after Al
metallization, pinholes are always formed on SiN because of the Al crystal hillocks formed during the SiN deposition.
The edge of the Al pattern is not perfectly covered because of poor step coverage of PECVD SiN on Al. The in situ
method for passivation of the aluminum during the wet etching has been used. By adding the surfactants, the passivation
technique for Al during the Si micromachining in TMAH-water solution is achieved. The quality of Si anisotropic wet
etching which includes etching rate, surface roughness and undercutting have been affected significantly.
An improved fabrication technique for silicon-based MEMS (MEMS: microelectromechanical systems) Infrared (IR) emitter is presented. The IR emitter was fabricated on silicon-on-insulator (SOI) wafer. The resistively heated polysilicon membrane fabricated by using deep reactive ion etching (DRIE) process on backside of SOI wafer has a low thermal mass structure, thus this IR-emitter can be modulated at high frequency. Additionally, the usage of the DRIE process instead of the wet etching process provides a more optimum design for the chip dimension. An appropriate boron (B) dope was used to realize the infrared absorption of silicon or infrared transparence of silicon for achieving self-heating or body emitting effect. By using the SOI wafer, the fabrication processes are simplified, and the production costs are decreased. The membrane temperature and emission spectrum of IR emitter were measured with thermal imaging system and spectroradiometer. The experimental results show that the IR emitter exhibits a strong emission in middle infrared range, and the modulation frequency can reach to 45Hz at 50% modulation depth. It is expected that this IR-emitter can be used in low cost sensing system.
In this paper, our work is focusing on investigating the mechanisms of the charge accumulation in dielectric layer of RF
MEMS capacitive switches. In our experiments, silicon-nitride and silicon-oxide composite films, e.g., SiO2+Si3N4 and
SiO2+Si3N4+SiO2 films are chosen as the dielectric layers for study. The composite films were prepared by thermal
oxidation and PECVD process. The Metal-Insulator-Semiconductor (MIS) structure was produced by using the
composite films as the dielectric layer. The capacitance versus voltage (C-V) measurement is employed to study the
space charge injection and relaxation process in the composite films. The results show that the charge accumulation can
be reduced by using the composite films structure.
In this paper, a capacitive vibration-to-electrical energy harvester was designed. An integrated process flow for
fabricating the designed capacitive harvester is presented. For overcoming the disadvantage of depending on external
power source in capacitive energy harvester, two parallel electrodes with different work functions are used as the two
electrodes of the capacitor to generate a build-in voltage for initially charging the capacitor. The device is a sandwich
structure of silicon layer in two glass layers with area of about 1 cm2. The silicon structure is fabricated by using
silicon-on-insulator (SOI) wafer. The glass wafers are anodic bonded on to both sides of the SOI wafer to create a
vacuum sealed package.
A vibration-powered micro-power-generator has been presented in this paper, which has integrated two different energy
harvesting mechanisms, e.g., Capacitive and Piezoelectric Mechanisms. The periodic vibration of the mass on movable
electrode causes the variation of the capacitance, and the strain in the piezoelectric film. These two mechanisms can
harvest the vibration energy and generate current in the output circuit. By using two different metals with large difference
in working function as the two electrodes of the capacitor, our design, the combination of these two different scavenge
mechanisms, can overcome the dependence of the traditional capacitive converter on the separate voltage source and
improve the efficiency of power conversion. The volume of the designed device is less than 0.8 cm3. The simulated
results reveal that this energy converter can provide an average output power of 82.21μW at an external vibration with a
frequency of 111.4 Hz and amplitude of 0.2g.
Dielectric charging is one of the main problems leading to failure of capacitive RF MEMS switches. In this work
phosphorus or boron ions were implanted into dielectric layer by ion implantation. After dielectric layer modification by
ion implantation, we focus on investigation of the mechanisms of the charge accumulation and recombination after the
sample electrically stressed with 80 V for 30 seconds. A
Metal-Insulator-Semiconductor (MIS) capacitor structure is
used for such an investigation. Silicon nitride films as the insulator in MIS structure were deposited by LPCVD process.
The space charge accumulation in the silicon nitride film can be characterized by Capacitance-Voltage (C-V)
measurement. Because of the ionization of the gas in the operating environment of the switch, ion injection by actuation
voltage during the operation of the RF MEMS switch will play the role to enhance the charge accumulation in the
dielectric layer. Our work offers a principle to understand the effect of the operating environment to the lifetime and
reliability of the RF capacitive MEMS switches.
RF MEMS capacitive switches hold great promise in commercial, aerospace, and military applications. However,
their commercialization is hindered by reliability concerns: charging effect in the dielectric layer can cause irreversible
stiction of the actuating part of the switch. Presently, a popular method to investigate the charging/discharging in the
dielectric layer is to measure an actual RF MEMS capacitive switch, which means a high experimental cost in fabricating
MEMS switch devices.
In this paper, a Metal-Insulator-Semiconductor (MIS) capacitor is used to investigate the charge accumulation in
the dielectric layer of RF MEMS switches. By measuring the capacitance versus voltage (C-V) curves of MIS capacitor
after voltage stressing, the dielectric charging/discharging characteristics are obtained. The experiment results indicate
that the injected charges from the metal bridge in RF MEMS switches are responsible for stiction phenomena. In SiNx
dielectric, the hole capture is more favored over electron capture, and the trapped charges tend to inhibit the charges
further injecting. The effects of the actuation voltage waveform on the charge accumulation in the dielectric layer were
investigated. It is verified that the tailored actuation voltage waveforms can be used to improve the reliability of RF
MEMS capacitive switches.
For higher-power-handling RF MEMS switches, the design of the switch is based on fixed-fixed beam capacitive structure with electrostatic actuation. Such RF MEMS switches are perceived to be unreliable because of the stiction and screening of the beam caused by charge accumulation in the dielectric layer. The research effort for a robust RF MEMS solution has been made for more than a decade. In this paper the models for stiction and screening caused by charge accumulation have been reviewed. As the first part of this paper, the possible charging mechanisms will be described, such as, 1) the dielectric charging arises from charges distributed throughout the dielectric material, 2) the presence of charges at the dielectric interface. In order to avoid the charge accumulation, trapped charges in the dielectric layer have to quickly vanish. Relaxing mechanisms of short time must be created inside of the dielectric for quick charge recombination. The second part of this paper will report the recent effort to create relaxing mechanisms of short time by using, such as doping dielectric, nano-composite dielectrics, or multi-layer stack of dielectric. Actuation wave form dependence of the charge accumulation will be also presented.
Comb-finger structure has been widely used in MEMS device as actuator and capacitive sensing unit. We can quite often find that the capacitance of and electrostatic force between a pair of the fingers are calculated by parallel plate model. This is certainly the simplest and the easiest solution, but with very low accuracy. The analytic method with reasonable accuracy is generally necessary for design engineers because it can give a quick estimation of the design and correct insight into the performance of the design. In this paper, the long comb-finger structure is analyzed. The multi-body-system, e.g., comb-finger above the ground, has been simplified. The fringe field effect is taken into account. Applying semi-empirical equations, we have developed analytic models for calculating capacitance and electrostatic force for various comb-finger structures. The results from the analytic models are compared with simulation results from commercial simulation software.
We describe the design of novel fuel atomizers with a unique internal spiral-conical structure for turbine engines and other propulsion systems. The atomizers are developed using a unique combination of two recently developed technologies: polymer-derived ceramics and an invert microstereolithography process. The polymer-derived ceramics are stable up to high temperatures (1500~1800ºC) and have excellent mechanical and thermal properties. Thus, fuel atomizers made from these materials can be used at high temperatures and have higher corrosion resistance. Invert microstereolithography is a recently developed 3-D microfabrication process that enables complex 3-D structures to be built with high dimensional precision (1µm). The resulting atomizers have many advantages, including stability at high temperatures, high resistance to corrosion, a unique structure for efficient sprays, low cost and amenability to batch manufacturing. With the success of our earlier investigation and recent development, we are able to develop novel atomizers that will fill an immediate need for propulsion systems and many other high-temperature applications. In the future, we will integrate the atomizers into combustion systems and perform physical demonstration of the complete fuel injection system on a representative engine platform for a range of operating conditions.
Measurements of low-frequency electrical noise (LFN) in quantum-well (QW) semiconductor lasers have been conducted using index guided AlGaInP lasers. To investigate location and origin of the LFN in QW lasers, temperature dependence of the LFN is investigated over a wide range of injected current from 10-7 to 6 X 10-2 A, at temperatures between 0 degree(s)C and 65 degree(s)C. The effects of a short duration of burn-in process on the LFN have been investigated by measuring the LFN in the virginal device and the device after 20 hours stress (current I equals 45 mA, temperature T equals 40 degree(s)C). We find, (1) there are different noise mechanisms associated to the observed terminal current noise when laser diodes operate above and below threshold current; (2) it is much more clear to see the effects of the stress on the LFN versus injected current (SI - ID) than in current versus voltage (ID - V) and optical-power versus injected current (PO - ID); (3) over the wide range of injected current, we did not observe the temperature dependence of the 1/f, though different g-r components appear in the spectra of the LFN measured at different temperatures. We have qualitatively analyzed the noise mechanisms and their location. We will also demonstrate that the noise measurement can be used as a diagnostic tool for the reliability of QW laser diodes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.