A novel quasi-distributed fiber temperature sensor based on the cascaded quantum dot fibers (QDFs) is proposed in this paper. The cascaded QDFs are fabricated by the 3D printing technology and can be divided into two parts QDF1 and QDF2. When the excitation light is coupled into the fiber, the QDF1 emits the 630nm fluorescence and the QDF2 emits the 530nm fluorescence. Because the fluorescence peaks will change with the temperature linearly, it can be used as the fiber temperature sensor. In the experiment, by controlling the temperature at each QDF, the sensor realizes the temperature measurement at different position. The sensitivity of the sensor at different position is 0.15nm/°C and 0.153nm/°C, respectively. The results verify the feasibility of the structure for distributed temperature sensing. The spatial resolution is 1.8mm, which is limited by the length of the printed QDF.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.