Most of the studies on signal detection task for medical images have used backgrounds that are or assumed to be statistically stationary. However, medical images usually present statistically non-stationary properties. Fewer studies have addressed how humans detect signals in non-stationary backgrounds. In particular, it is unknown whether humans can adapt their strategy to different local statistical properties in non-stationary backgrounds. In this paper, we measured human performance detecting a signal embedded in statistically non-stationary noise and in statistically stationary noise. Test images were designed so that performance of model observers that assumed statistically stationary and made no use of differences in local statistics would be constant across both conditions. In contrast, performance of an ideal model observer that uses local statistics is about 140% higher with the non-stationary backgrounds than the stationary ones. Human performance was 30% higher in the non-stationary backgrounds. We conclude that humans can adapt their strategy to the local statistical properties of non-stationary backgrounds (although suboptimally compared to the ideal observer) and that model observers that derive their templates based on stationary assumptions might be inadequate to predict human performance in some non-stationary backgrounds.
KEYWORDS: Signal to noise ratio, Interference (communication), Medical imaging, Performance modeling, Image quality, Image processing, Image filtering, Optical filters, Signal processing, Data modeling
Most metrics of medical image quality typically treat all variability components of the background as a Gaussian noise process. This includes task based model observers (non-prewhitening matched filter without and with an eye filter, NPW and NPWE; Hotelling and Channelized Hotelling) as well as Fourier metrics of medical image quality based on the noise power spectra. However, many investigators have observed that unlike many of the models/metrics, physicians often can discount signal-looking structures that are part of the normal anatomic background. This process has been referred to as reading around the background or noise. The purpose of this paper is to develop an experimental framework to systematically study the ability of human observers to read around learned backgrounds and compare their ability to that of an optimal ideal observer which has knowledge of the background. We measured human localization performance of one of twelve targets in the presence of a fixed background consisting of randomly placed Gaussians with random contrasts and sizes, and white noise. Performance was compared to a condition in which the test images contained only white noise but with higher contrast. Human performance was compared to standard model observers that treat the background as a Gaussian noise process (NPW, NPWE and Hotelling), a Fourier-based prewhitening matched filter, and an ideal observer. The Hotelling, NPW, NPWE models as well as the Fourier-based prewhitening matched filter predicted higher performance for the white noise test images than the background plus white noise. In contrast, ideal and human performance was higher for the background plus white noise condition. Furthermore, human performance exceeded that of the NPW, NPWE and Hotelling models and reached an efficiency of 19% relative to the ideal observer. Our results demonstrate that for some types of images human signal localization performance is consistent with use of knowledge about the high order moments of the backgrounds to discount signal-looking structures that belong to the background. In such scenarios model observers and metrics that either ignore the background or treat the background as a Gaussian process (Hotelling, Channelized Hotelling, Task-based SNR) under predict human performance.
Including internal noise in computer model observers to degrade model observer performance to human levels is a common method to allow for quantitatively comparisons of human and model performance. In this paper, we studied two different types of methods for injecting internal noise to Hotelling model observers. The first method adds internal noise to the output of the individual channels: a) Independent non-uniform channel noise, b) Independent uniform channel noise. The second method adds internal noise to the decision variable arising from the combination of channel responses: a) internal noise standard deviation proportional to decision variable's standard deviation due to the external noise, b) internal noise standard deviation proportional to decision variable's variance caused by the external noise. We tested the square window Hotelling observer (HO), channelized Hotelling observer (CHO), and Laguerre-Gauss Hotelling observer (LGHO). The studied task was detection of a filling defect of varying size/shape in one of four simulated arterial segment locations with real x-ray angiography backgrounds. Results show that the internal noise method that leads to the best prediction of human performance differs across the studied models observers. The CHO model best predicts human observer performance with the channel internal noise. The HO and LGHO best predict human observer performance with the decision variable internal noise. These results might help explain why previous studies have found different results on the ability of each Hotelling model to predict human performance. Finally, the present results might guide researchers with the choice of method to include internal noise into their Hotelling models.
Linear model observers have been used successfully to predict human performance in clinically relevant visual tasks for a variety of backgrounds. On the other hand, there has been another family of models used to predict human visual detection of signals superimposed on one of two identical backgrounds (masks). These masking models usually include a number of non-linear components in the channels that reflect properties of the firing of cells in the primary visual cortex (V1). The relationship between these two traditions of models has not been extensively investigated in the context of detection in noise. In this paper, we evaluated the effect of including some of these non-linear components into a linear channelized Hotelling observer (CHO), and the associated practical implications for medical image quality evaluation. In particular, we evaluate whether the rank order evaluation of two compression algorithms (JPEG vs. JPEG 2000) is changed by inclusion of the non-linear components. The results show: a) First that the simpler linear CHO model observer outperforms CHO model with the nonlinear components investigated. b) The rank order of model observer performance for the compression algorithms did not vary when the non-linear components were included. For the present task, the results suggest that the addition of the physiologically based channel non-linearities to a channelized Hotelling might add complexity to the model observers without great impact on medical image quality evaluation.
There have been two distinct approaches to develop human vision models that can be used to perform automated evaluation and optimization of medical image quality: linear task based model observers vs. perceptual difference/image discrimination models. Although these two approaches are very different there has been little work directly comparing them in their ability to optimize human performance in clinically relevant tasks. We compared the effectiveness of these two types of metrics of image quality to perform automated computer optimization of JPEG 2000 image compression encoder settings using test images that combined real x-ray coronary angiogram backgrounds with simulated filling defects of 184 different size/shapes. A genetic algorithm was used to optimize the JPEG 2000 encoder settings with respect to: a) a particular task based model observer performance (non-prewhitening matched filter with an eye filter, NPWE; b) a particular perceptual difference/image discrimination model error metric (DCTune2.0; NASA Ames Research Center). A subsequent human psychophysical study was conducted to evaluate the effect of the two different optimized compression encoder settings on visual detection of the simulated filling defect in one of four locations (four alternative forced choice; 4 AFC). Results show that optimizing JPEG 2000 encoder settings with respect to both the NPWE performance and DCTune 2.0 perceptual error lead to improved human task performance relative to human performance with the default encoder settings. However, the NPWE-optimization led to much greater human performance improvement than the perceptual difference model optimization.
The new still image compression standard JPEG 2000 provides a set
of features such as multiple resolution representation, tiling,
region of interest (ROI) coding, and easy compression rate
control. Previous evaluations of these encoder options have been
with respect to non-task based image quality metrics (PSNR) and
for non-medical images. In this paper, we investigated the effect
of different JPEG 2000 encoder options on task-based model and
human observer performance. Test images consisted of x-ray
coronary angiogram backgrounds with simulated filling defects
(signals)of 184 different size/shapes inserted in one of four
simulated arteries. The task was to select the simulated artery
containing the signal (four alternative forced choice; 4 AFC). The
signal on each trial varied in shape and size but was known to the
observer (signal known exactly but variable, SKEV). We obtained
performance for the non-prewhitening matched filter with an eye
filter (NPWE) model for the SKEV task through direct template
implementation (Eckstein et al., 2000) on the test images. For
comparison, a follow-up human psychophysical study with two
observers was conducted. Our results showed that the dependence of
task performance on the JPEG 2000 encoder options was similar for
both the NPWE model and the human observers.
Previous work has shown that model observers can be used for automated optimization of human performance in clinically relevant detection tasks where the signal does not vary and is known to the observers (signal known exactly, SKE). In the present study, we investigate whether model observers can be used for automated optimization of a more clinically realistic task in which the signal varies in shape and size from trial to trial and is not known to the observer (signal known statistically, SKS). We specifically test the hypothesis of whether optimizing model observer in a computationally more tractable task in which the signal varies from trial to trial but is known to the observer (Signal known exactly but variable task, SKEV) leads to improved model and human performance in the SKS task. We optimized the JPEG 2000 encoder options to maximize performance of a particular model observer (non-prewhitening with an eye filter; NPWE) for a SKEV task using hybrid test images combining simulated signals and patient x-ray coronary angiograms. We then show that NPWE SKEV optimized JPEG 2000 encoder settings lead to an improved NPWE performance in the clinically more realistic SKS task. A follow up psychophysical study showed that human performance in the SKEV and SKS tasks improved by 18-24 % with the encoder options resulting from NPWE SKEV performance optimization. These findings suggest that model observer performance in the computationally more tractable SKEV task can be used to optimize human performance in the more clinically realistic SKS task using real anatomic backgrounds.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.