Many quantum computing algorithms are being developed with the advent of quantum computers. Solving linear systems is one of the most fundamental problems in almost all of science and engineering. HHL algorithm, a monumental quantum algorithm for solving linear systems on the gate model quantum computers, was invented and several advanced variations have been developed. However, HHL-based algorithms have a lot of limitations in spite of their importance. We address solving linear systems on a D-Wave quantum annealing device. To formulate a quadratic unconstrained binary optimization (QUBO) model for a linear system solving problem, we make use of a linear least-square problem with binary representation of the solution. We validate this QUBO model on the D-Wave system and discuss the results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.