Development of imaging, sensing, and characterization of cells at Research Center for Applied Sciences (RCAS) of Academia Sinica in Taiwan is progressing rapidly. The research on advanced lattice light sheet microscopy for temporal visualization of cells in three dimensions at sub-cellular resolution shows novel imaging results. Label-free observation on filopodial dynamics provides a convenient assay on cancer cell motility. The newly-developed software enables us to track the movement of two types of particles through different channels and reconstruct the co-localized tracks. Surface plasmon resonance (SPR) for detecting urinary microRNA for diagnosis of acute kidney injury demonstrates excellent sensitivity. A fully automated and integrated portable reader was constructed as a home-based surveillance system for post-operation hepatocellular carcinoma. New microfluidic cell culture devices for fast and accurate characterizations prove various diagnosis capabilities.
This paper reports a new microfabrication process named "Multi-Scale Soft-Lithographic Lift-Off and Grafting (MS-SLLOG)" used to construct active nanophotonic devices. MS-SLLOG is a low-temperature (less than 150°C) microfabrication technique that allows soft lithographically molded polymer micro-structures to be integrated together with silicon-based microelectromechanical systems (MEMS) structures to perform active control. Moreover, MS-SLLOG process allows us to achieve a hierarchical device structure seamlessly accommodating feature sizes ranging from tens of nanometer to sub-millimeters on a single chip for nanophotonic structure integration. To demonstrate the MS-SLLOG process capability, a strain-controlled micro-optical grating device is fabricated and experimentally characterized. The experimental results successfully show the operation of an active polymer nanophotonic device fabricated by the MS-SLLOG process.
This paper reports on a new micro optical reflector made of an organic elastomer, Polydimethylsiloxane (PDMS), which achieves multi-axis motion with a single actuator layer. The whole device structure incorporates Au-coated three-dimensional PDMS micro reflector integrated with electrostatic MEMS actuators on a silicon chip by a new fabrication method named "Soft-Lithographic Lift-Off and Grafting (SLLOG)" process. The SLLOG process is a low-temperature (less than 150°C) microfabrication technique that allows soft lithographically molded PDMS micro-structures to be integrated together with silicon micromachined device patterns. The developed PDMS/silicon hybrid device reflects visible light with fast response and large rotational motion through taking advantage of the mechanical compliance of PDMS structures. The demonstrated PDMS-based reflector can achieve 4.6 micron vertical displacement using AC actuation voltage of 40 V at frequency of 1.0 kHz, and ±1.43° scanning angles using AC actuation voltage of 40 V at resonant frequency of 5.0 kHz, and ±0.85° scanning angles for static operation at 60V.
Conference Committee Involvement (1)
Optomechatronic Micro/Nano Devices and Components II
4 October 2006 | Boston, Massachusetts, United States
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.