A compact, discrete path Nd:YAG Innoslab amplifier system was presented. At a repetition rate of 12.7 W amplified output power was achieved successfully with the seed power of 2.7 W. The corresponding extraction efficiency was 14.2%.
A reliable, high-energy, and efficient 2 μm laser is a key component in the development of a coherent Doppler wind detection lidar. A theoretical and experimental analysis of (Tm, Ho) co-doped laser amplifiers is presented. Considering the influence of energy transfer, upconversion, and ground-state depletion, the amplified pulse energy as a function of input pulse energy can be predicted at different temperatures. To validate the simulated results, a set of conductively cooled, end-pumped (Tm, Ho):LuLiF, and side-pumped (Tm, Ho):YLF amplifiers have been constructed. The theoretical performance is found to be in good agreement with the experimental results in both end-pumped and side-pumped amplifiers.
A compact single-frequency master oscillator power amplifier laser system composed of three-stage thulium-doped fiber amplifiers was developed. At a repetition rate of 10 Hz, >100-μJ pulse energy at 2050.5-nm wavelength, with ∼431-ns pulse width, was achieved successfully. The pulse profile could be actively controlled by adjusting the drive signal of an acoustic-optical modulator. This all-fiber laser system could be utilized as a seeder laser for a solid-state power amplifier system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.