Spectral analysis is an important method for noninvasive blood glucose measurement. Presently, Fourier-transform spectroscopy is a well-established technique that provides highly resolved spectral measurements in the infrared, visible and ultraviolet ranges. In this study, we proposed a novel method for obtaining linear spectra based on regular Spatial Heterodyne Spectrometers. In particular, we wanted to use a fluorescent dye-coated screen and a Fourier lens to directly obtain uniform K-space spectra. In the system, the up-conversion luminescent material on the screen is hoped to absorb coherent incident light and emit light of a specific wavelength that maintains the coherence. According to our calculation, the photodetector array receives the Fourier image pattern on the screen and can directly obtain the spectrum of the measured substance, therefore the scientists can directly observe the spectrum of the test sample. Furthermore, we replace the fluorescent dye-coated screen by an infrared laser detector card, which is commonly used in laboratories, to primary verify the feasibility of the method. Up-conversion luminescent materials that are widely used in the fields of analytical chemistry, biomedicine, and life sciences, have very good application prospects in biological imaging, photodynamic therapy, solar cells, flexible fluorescent films and sensing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.