Here we report the growth method of InGa/GaAs quantum dot (QD) with differnet QD density by manipulating InAs deposition rate from 0.065 ML/s to 0.1 ML/s. Chose the highest density QD as the active region and grow multilayer InAs/GaAs QD with high uniform. Then fabricate a narrow ridge waveguide laser by semiconductor process. The rigid waveguide is 1.8 um high and 5 um wide, and the cavity length is 1mm. The output power of this narrow-rigid laser is 164 mW and central wavelength is 1204.6 nm when the injection current is 0.5 A at 15°C. The threshold current is as low as 35 mA, and threshold current density is 1939 A/cm2.
We demonstrated high power semiconductor diode lasers emitting around 2.1 μm with the micro-stripe broad area (MSBA) structure which was proposed to improve the broad area (BA) lasers’ lateral beam quality. 1.28W output power at 7A at continuous wave (CW) operation was achieved from the uncoated MSBA laser. It is shown that the micro-stripe structure would lead to worse threshold current and slope efficiency of the lasers because of the less-pumped lossy regions. However, the MSBA lasers would have better heat dissipation system with proper micro-stripe structure and gain advantages on power performance at high currents.
We report the wavelength tuning of type-II “W” quantum well of interband cascade laser. By changing the thickness of the InAs electron well, the wavelength of the active region is adjusted. We found that the whole 3-4 μm spectra can be realized and the intensity was basically the same by measuring the photoluminescence (PL) of the active region. It showed that the type-II “W” quantum well of interband cascade laser can achieve 3-4 μm range without attenuation. In addition, we calculated the wavelength of quantum well of different InAs thickness by the 8-band k·p method. And we found that the wavelength of the active region varies with the thickness of the InAs electron well, which is consistent with the theory. In addition, the measured wavelength was different from the theoretical wavelength, which may be due to the As incorporation. The incorporation of As into the InGaSb layer will lead to blue shift in the wavelength.
We report on successful fabricating of GaSb-based type-I quantum well distributed Bragg reflector (DBR) lasers emitting at 2080nm. Second-order Bragg gratings of chromium were patterned by electron beam lithography. For 1.5- mm-long laser diode, single mode continuous-wave operation with side mode suppression ratio (SMSR) as high as 30dB is obtained. The line-width of the lasing wave is kept as narrow as 70MHz. The devices show a stable single mode operation with current tuning rate of 0.01nm/mA.
Here we report the solid source molecular beam epitaxy (MBE) growth of high quality of InGaAs/ GaAs quantum dot (QD) structures. A laser device is fabricated by the semiconductor process, including Lithography, Inductively Coupled Plasma (ICP), Plasma Enhanced Chemical Vapor Deposition (PECVD) and Reactive Ion Etching (RIE). The rigid is 100μm wide and cavity is 2000um long. Room temperature continuous-wave (CW) operation with emission wavelength around 1.31μm is presented. Threshold current (Ith) and threshold current density (Jth) is 0.3A and 150A/cm2 at 15°, and output power at Ith=7A reached as high as 1.079W. We also observe that the spectrum shift from 1315nm to 1333nm when the injection currents increase from 1.5A to 3.5A, and the shift speed is 8.72 nm/A.
Special processing of rapid thermal annealing on the cavity coating films for 1950 nm wavelength antimonide quantum well Laser diodes are studied. The maximum output power of the laser is greatly improved by RTA process on cavity facet films from around 610mW to above 700mW. The power conversion efficiency is further improved by the simple process by 23.2% than that of the laser coated. And the laser devices become more reliable and have extended service life after the process.
In this paper, we are report an avalanche photodiodes (APD) with an InGaAs absorption region and an InAlAs avalanche region. Devices are designed with separate absorption, grading, charge, and multiplication (SAGCM) layers on InP substrates, which are demonstrated to detect 1550 nm wavelength light. The epilayers of the APD devices are grown by a Veeco Gen 930 MBE system. The quality of epilayers is good which shown in the surface morphology characterized by AFM. The root mean square (RMS) of surface morphology is only 1.4Å.Operating at room temperature and in the linear mode, the APD achieved a dark-current level of 2.7uA/mm2,and a maximum gain of M>300 is demonstrated.
The short- and mid-wavelength infrared detectors based on short period type II superlattices (SLs) InAs
(2ML) / GaSb (8ML) and InAs (8ML) / GaSb (8ML) were grown by molecular-beam epitaxy on
semi-insulating GaAs substrates. An interfacial misfit mode AlSb quantum dot layer and a thick GaSb layer
were grown as buffer layers. Room-temperature optical transmittance spectra showed clear absorption edge at
~2μm and ~5μm. The 50% cutoff wavelength of the two photoconductors was 2.1μm and 5.05μm in
photoresponse at 77K respectively. The blackbody detectivity was beyond 2×108 cmHz1/2/W at 77K and 1×108
cmHz1/2/W at room temperature with 8 V/cm bias.
Effects of SiO2 encapsulation and rapid thermal annealing (RTA) on the optical properties of GaNAs/GaAs single quantum well (SQW) were studied by low temperature photoluminescence (PL). A blueshift of the PL peak energy for both the SiO2-capped region and the bare region was observed. The results were attributed to the nitrogen reorganization in the GaNAs/GaAs SQW. It was also shown that the nitrogen reorganization was obviously enhanced by SiO2 cap-layer. A simple model [1] was used to describe the SiO2-enhanced blueshift of the low temperature PL peak energy.
The quantum well intermixing of Ga(In)NAs/GaAs simple quantum well (SQW) using SiO2 encapsulation and rapid thermal annealing has been studied. Obvious enhanced intermixing of GaInNAs/GaAs SQW was observed due to the localized SiO2 capping layer and RTA at temperature between 650íµ and 900íµ. The selective intermixing strongly depends on N composition and In composition. An obvious selective intermixing had been found in the samples with small N composition and/or high In composition.
The growth of GaInNAs/GaAs quantum well (QW) has been investigated by solid-source molecular beam epitaxy (MBE). N was introduced by a dc-active plasma source. Highest N concentration of 2.6% in GaInNAs/GaAs QW was obtained, corresponding to the photoluminescence peak wavelength of 1.57 (m at 10K. The nitrogen incorporation behavior in MBE growth and the quality improvement of the QW have been studied in detail. 1.3 (m GaInNAs/GaAs SQW laser and MQW resonant-cavity enhanced photodetector have been achieved.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.