Photonic Crystals (PhCs) have been found to have exotic properties, such as the high dispersion and the slow group
velocity, at different frequency range. It has also been reported that the photonic crystal can behave like a negative index
material that is similar to the metallization based metamaterials composed of ring resonators and wires. It is essential to
have knowledge about the effective properties of a photonic crystal to evaluate its performance. Here, we discuss a
photonic crystal with air holes etched in a multilayer dielectric material. This structure can be cascaded to a three
dimensional photonic crystal by simply stacking the porous multilayer film. Light is propagating perpendicularly through
the multilayer film, and the transmission and reflection including both the magnitudes and the phases are obtained
through numerical simulation. Effective properties along this direction, including the permittivity, the permeability and
the effective refractive index, are calculated. From these basic and essential properties, other features such as dispersion,
group velocity can be derived.
Based on high performance fast tunable phase retarder and novel algorithm, an innovative polarization imaging solution
is proposed. It allows very fast recording the polarization images at the speed limit of a CCD. It contains no moving
parts and can accommodate to most of the existing CCD cameras. The unique measurement procedure allows efficient,
accurate sensing of the polarization imaging. A computer-aided diagnosis software has been developed for the proposed
polarization imaging system.
In recent years there has been an increasing interest in studying the propagation of polarized light in randomly scattering media. This paper presents a novel approach for cell and tissue imaging by using full Stokes imaging and for its improved diagnostics by using artificial neural networks (ANNs). Phantom experiments have been conducted using a prototyped Stokes polarization imaging device. Several types of phantoms, consisting of polystyrene latex spheres in various diameters, were prepared to simulate different conditions of epidermal layer of skin. Several sets of four images that contain not only the intensity, but also the polarization information were taken for analysis. Wavelet transforms are first applied to the Stokes components for initial feature analysis and extraction. Artificial neural networks (ANNs) are then used to extract diagnostic features for improved classification and prediction. The experimental results show that the classification performance using Stokes images is significantly improved over that using the intensity image only.
This paper summarizes the material synthesis and properties of transparent electro-optic ceramics, namely OptoCeramic®, including PLZT and PMN-PT. Material structure, dielectric, optical and electro-optic properties are discussed. OptoCeramic materials feature in high E-O effect, low optical loss, broad transmission wavelength range, ceramic ruggedness, and low cost. A variety of devices made from OptoCeramic materials are discussed, including variable optical attenuators, polarization controllers, sinusoidal filters, dynamic gain flattening filters, tunable optical filters, and Q-switches.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.