Parallel confocal spectroscopy can significantly expand the analytical capacity of single biological cells and Raman hyperspectral imaging. Here, we report the development of a compressive sensing technique for single-acquisition multifocal Raman spectroscopy, which is capable of improving the speed of conventional confocal Raman spectroscopy by 2-3 orders of magnitude. The technique generates a 2-D multifocus excitation pattern and simultaneously record the Raman spectra from the multi-foci by projecting their scatterings along both the vertical and horizontal direction of the CCD camera, and both a pseudo-inverse and a hierarchical sparsity algorithms are developed to retrieve the individual spectra. The performance was validated by Raman spectroscopy of multiple trapped cells as well as by large-scale Raman imaging.
Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.
Optical pulling is the attraction of objects back to the light source by the use of optically induced “negative forces”. The light-induced photophoretic force is generated by the momentum transfer between the heating particles and surrounding gas molecules and can be several orders of magnitude larger than the radiation force and gravitation force. Here, we demonstrate that micron-sized absorbing particles can be optically pulled and manipulated towards the light source over
a long distance in air with a collimated Gaussian laser beam based on a negative photophoretic force. A variety of airborne absorbing particles can be pulled by this optical pipeline to the region where they are optically trapped with
another focused laser beam and their chemical compositions are characterized with Raman spectroscopy. We found that
micron-sized particles are pulled over a meter-scale distance in air with a pulling speed of 1-10 cm/s in the optical pulling pipeline and its speed can be controlled by changing the laser intensity. When an aerosol particle is optically
trapped with a focused Gaussian beam, we measured its rotation motion around the laser propagation direction and
measured its Raman spectroscopy for chemical identification by molecular fingerprints. The centripetal acceleration of
the trapped particle as high as ~20 times the gravitational acceleration was observed. Optical pulling over large distances
with lasers in combination with Raman spectroscopy opens up potential applications for the collection and identification
of atmospheric particles.
Cupriavidus necator accumulates large amounts of poly(3-hydroxybutyrate) (PHB), a biodegradable substitute for petroleum-based plastics, under certain nutrient conditions. Conventional solvent-extraction-based methods for PHB quantification only obtain average information from cell populations and, thus, mask the heterogeneity among individual cells. Laser tweezers Raman spectroscopy (LTRS) was used to monitor dynamic changes in the contents of PHB, nucleic acids, and proteins in C. necator at the population and single-cell levels when the microorganism cells were cultivated at various carbon-to-nitrogen ratios. The biosynthetic activities of nucleic acids and proteins were maintained at high levels, and only a small amount of PHB was produced when the bacterial cells were cultured under balanced growth conditions. By contrast, the syntheses of nucleic acids and proteins were blocked, and PHB was accumulated in massive amount inside the microbial cells under nitrogen-limiting growth circumstances. Single-cell analysis revealed a relatively high heterogeneity in PHB level at the early stage of the bacterial growth. Additionally, bacterial cells in populations at certain cultivation stages were composed of two or three subpopulations on the basis of their PHB abundance. Overall, LTRS is a reliable single-cell analysis tool that can provide insights into PHB fermentation.
The dynamics of bacterial spore germination were successfully observed using a fast Raman imaging system, in combination with real-time phase contrast microscopy. By using a multifocus scan scheme, the spontaneous Raman-scattering imaging acquisition speed was increased to ∼30 s per frame while maintaining diffraction-limited resolution, which allowed monitoring of the dynamics of spore germination on a time scale of tens of seconds to a few minutes. This allowed simultaneous gathering of rich spatial distribution information on different cellular components including time-lapse molecular images of Ca-dipicolinic acid, protein, and nucleic acid during germination of single bacterial spores for the periods of 30 to 60 min.
We have developed a multifocus confocal Raman microspectroscopy system that allows simultaneous analyses of ∼80 individual biological or airborne microparticles based on a precise image-guided technique. Multiple individual particles adhered in random positions on a coverslip were illuminated by a multifocus excitation pattern formed by rapidly steering a single laser beam with a pair of galvo-mirrors, and their Raman scatterings were synchronously projected with another galvo-mirror to different rows of a CCD chip for parallel spectroscopic analyses. We show that this technique can be used to rapidly identify single airborne particles or bacteria collected on a slide and to monitor germination dynamics of multiple bacterial spores in real-time.
We report on development of dual-trap Raman tweezers for monitoring cellular dynamics and heterogeneity of interacting living cells suspended in a liquid medium. Dual-beam optical tweezers were combined with Raman spectroscopy, which allows capturing two cells that are in direct contact or closely separated by a few micrometers and simultaneously acquiring their Raman spectra with an imaging CCD spectrograph. As a demonstration, we recorded time-lapse Raman spectra of budding yeast cells held in dual traps for over 40 min to monitor the dynamic growth in a nutrient medium. We also monitored two germinating Bacillus spores after the initiation with L-alanine and observed their heterogeneity in the release of CaDPA under identical microenvironment.
Raman tweezers and quantitative differential interference contrast (DIC) microscopy are combined to monitor the dynamic germination of individual bacterial spores of Bacillus species, as well as the heterogeneity in this process. The DIC bias phase is set properly such that the brightness of DIC images of individual spores is proportional to the dipicolinic acid (DPA) level of the spores, and an algorithm is developed to retrieve the phase image of an individual spore from its DIC image. We find that during germination, the rapid drop in both the intensity of the original DIC image and the intensity of the reconstructed phase image precisely corresponds to the release of all DPA from that spore. The summed pixel intensity of the DIC image of individual spores adhered on a microscope coverslip is not sensitive to the drift of the slide in both horizontal and vertical directions, which facilitates observation of the germination of thousands of individual spores for long periods of time. A motorized stage and synchronized image acquisition system is further developed to effectively expand the field of view of the DIC imaging. This quantitative DIC technique is used to track the germination of hundreds or thousands of individual spores simultaneously.
This paper reports the principle and applications of the combination technique of optical trapping and Raman spectroscopy for real-time analysis of single living cells. We demonstrate that the information of each substance inside a captured cell can be retrieved by the Raman spectrum of the cell. The effect of alcohol solution on single human Red Blood Cell (RBC) is investigated using near-infrared laser tweezers Raman spectroscopy (LTRS). The significant difference between the spectrum of fresh RBC and the spectrum of RBC exposed to alcohol is observed due to the degradation of RBC. We also present the preliminary study result on the diagnosis of colorectal cancer using LTRS system.
In this paper, we study optical trapping and manipulation of single electrically charged colloidal particles. We measured the dynamic motion of a charged particle captured in a linearly polarized optical trap. We found that the position's fluctuation of a trapped particle in the parallel direction to the lase polarization is larger than that in the normal direction to the polarization, which suggests that there exists an additional electric force parallel to the laser polarization direction exerting on the charged particle beside the known radiation forces on the dielectric particle. This asymmetry in dynamic motion is significant when the particle size is less than the wavelength of the trapping laser. We present both the theoretical and experimental results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.