Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese
Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor
obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to
shortwave-infrared wavelength region. The sensor is the follow-on mission of the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design
review of the instrument was accomplished in 2014. Integration and tests of a Flight Model (FM) of HISUI
hyperspectral sensor have been completed in the beginning of 2017. Simultaneously, the development of JEMExternal
Facility (EF) Payload system for the instrument is being carried out. The system includes the structure, the
thermal control sub-system and the electrical sub-system. The tests results of flight model, such as optical
performance, optical distortion and radiometric performance are reported.
KEYWORDS: Sensors, Visible radiation, Short wave infrared radiation, Fermium, Frequency modulation, Finite element methods, Signal to noise ratio, Signal processing, Signal detection, Performance modeling
Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared region. The sensor system is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of an flight model of HISUI hyperspectral sensor is being carried out. Simultaneously, the development of JEM-External Facility (EF) Payload system for the instrument started. The system includes the structure, the thermal control system, the electrical system and the pointing mechanism. The development status and the performances including some of the tests results of Instrument flight model, such as optical performance, optical distortion and radiometric performance are reported.
KEYWORDS: Short wave infrared radiation, Radiometry, Thermography, Signal processing, Infrared radiation, Calibration, Sensors, Space operations, Visible radiation, Near infrared
ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) System is operating more than 15 years since launched on board of NASA’s Terra spacecraft in December 1999. ASTER System is composed of 3 radiometers (VNIR (Visible and Near Infrared Radiometer), SWIR (Short-Wave Infrared Radiometer), and TIR (Thermal Infrared Radiometer)), CSP (Common Signal Processor) and MSP (Master Power Supply). This paper describes the ASTER System operating history and the achievement of ASTER System long term operation since the initial checkout operation, the normal operation, and the continuous operation. Through the 15 years operation, ASTER system had totally checked the all subsystems (MPS, VNIR, TIR, SWIR, and CSP) health and safety check using telemetry data trend evaluation, and executed the necessary action. The watch items are monitored as the life control items. The pointing mechanics for VNIR, SWIR and TIR, and the cooler for SWIR and TIR are all operating with any problem for over 15 years. In 2003, ASTER was successfully operated for the lunar calibration. As the future plan, ASTER team is proposing the 2nd lunar calibration before the end of mission.
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a high-resolution optical sensor system that can observe in a wide region from the visible and near-infrared, the short wavelength infrared to the thermal infrared with 14 spectral bands on board of NASA’s Terra spacecraft for Earth Observing System (EOS) “A mission to planet earth." ASTER achieved 5 years mission success on orbit operation normally which is the specified target after launched on December, 1999. And after through 10 years continuous orbit operation, ASTER has still operating the long life observation of extra success to be 15 years in total on December, 2014. As for ASTER instrument that is composed of 3 radiometers; the Visible and Near Infrared Radiometer (VNIR) with 3 bands, the Short Wavelength Infrared Radiometer (SWIR) with 6 bands, the Thermal Infrared Radiometer (TIR) with 5 bands, overall ASTER long life data taken by 15 years onboard operation has been reviewed from the point of view of the health and safety check by Telemetry (TLM) data trend, the function and performance evaluation by observation data trend, the onboard calibration and verification by periodic Calibration(CAL) data trend. As a result, the radiometric degradation of VNIR and TIR and the temperature rise of SWIR detector were identified as significant challenges. The countermeasure plan towards the end of mission was clarified and also the novel lessons learned was verified.
KEYWORDS: Sensors, Short wave infrared radiation, Spectrographs, Signal to noise ratio, Radiometry, Signal processing, Spectral calibration, Signal detection, Telescopes, Spectral resolution
The hyper-multi spectral mission named HISUI (Hyper-spectral Imager SUIte) is the next Japanese earth observation
project that will be on board ALOS-3 satellite. This project is the follow up mission of the Advanced Spaceborne
Thermal Emission and reflection Radiometer (ASTER). HISUI is composed of hyperspectral radiometer with higher
spectral resolution and multi-spectral radiometer with higher spatial resolution. The functional evaluation model is under
development to confirm the spectral and radiometric performance prior to the flight model manufacture phase. This
model contains the VNIR and SWIR spectrograph, the VNIR and SWIR detector assemblies with a mechanical cooler
for SWIR, signal processing circuit and on-board calibration source.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.