In this work, a filter-free scheme of photonic generation of a high-quality 32-tupling millimeter-wave signal based on four dual-port MZMs (DP-MZMs) is proposed and simulated. In this scheme, four DP-MZMs are recombined into the two parallel DP-MZMs and the two cascaded DP-MZMs, respectively. After being modulated by a local oscillation signal, the light from the two parallel DP-MZMs is converted by a photodetector into an electrical signal, which is imposed on the electrodes of the two cascaded DP-MZMs. The simulation results show that the performances of the photonic microwave signal are affected by the modulation index, extinction ratio, and bias voltage of the DP-MZMs. Under the optimized operation parameters, a high-quality 32-tupling millimeter-wave signal with 46 dB radio frequency sideband suppression ratio (RFSSR) and 40 dB optical sideband suppression ratio (OSSR) is generated without using the filter. Because the two cascaded DP-MZMs are modulated by a small signal and there is no filter in the system, the high stability and high utilization rate of the sideband can also be realized in this scheme.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.