Deep-learning based application for digital mammography screening is limited due to lack of labeled data. Generating digital mammogram (DM) from existing labeled digitized screen-film mammogram (DFM) dataset is one approach that may alleviate the problem. Generating high resolution DMs from DFMs is a challenge due to the limitations of network capacity and lack of GPU memory. In this study, we developed a deep learning framework, Cycle-HDDM, with which high resolution DMs were generated from DFMs. Our Cycle-HDDM model first used a sliding window to crop DFMs and DMs into patches of 256 by 256 in size. Then, we divided the patches into three categories (breast, background and boundary) using breast masks. We paired patches from the DFM and DMdatasets for training with the constraint that these paired patches should be sampled from the same category of the two different image sets. We used U-Net as the generators and modified the discriminators so that the outputs of the discriminators were a two-channel image, one channel for distinguishing real and synthesized DMs, and the other for representing a probability map for breast mask. We designed a study to evaluate the usefulness of Cycle-HDDM in a segmentation task, the objective of which was to estimate the percentage of breast density (PD) on DMs using deep neural network (DNN). With IRB approval, 1651 DFMs and 813 DMs were collected. Both DFMs and DMs were normalized to a pixel size of 100μm × 100μm for the experiments. The results show that the synthesized DMs by Cycle-HDDM could significantly improve (p < 0.001) the DNN-based mammographic density segmentation.
Breast cancer is presently one of the most common cancer among women and has high morbidity and mortality worldwide. The emergence of microcalcifications (MCs) is an important early sign of breast cancer. In this study, a computer-aided detection and diagnosis (CAD) system is developed to automatically detect MC clusters (MCCs) and further providing cancer likelihood prediction. Firstly, each individual MC is detected using our previously designed MC detection system, which includes preprocessing, MC enhancement, MC candidate detection, false positive (FP) reduction of MCs and regional clustering procedures. Secondly, a deep convolution neural network (DCNN) is trained on 394 clinical high-resolution full field digital mammograms (FFDMs) containing biopsy-proven MCCs to discriminate MCC lesions. For cluster-based detection evaluation, a 90% sensitivity is obtained with a FP rate of 0.2 FPs per image. The classification performance of the whole system is validated on 70 cases and tested on 71 cases, and for case-based diagnosis evaluation, the area under the receiver operating characteristic curve (AUC) on validation and testing sets are 0.945 and 0.932, respectively. Different from previous literatures committing to finding and selecting effective features, the proposed method replaces manual feature extraction step by using deep convolution neural network. The obtained results demonstrate that the proposed method is effective in the automatically detection and classification of MCCs.
KEYWORDS: Neural networks, Breast cancer, Signal detection, Mammography, Computer aided diagnosis and therapy, Detection and tracking algorithms, Breast, Image processing
Breast cancer is one of the most common cancers and has high morbidity and mortality worldwide, posing a serious threat to the health of human beings. The emergence of microcalcifications (MCs) is an important signal of early breast cancer. However, it is still challenging and time consuming for radiologists to identify some tiny and subtle individual MCs in mammograms. This study proposed a novel computer-aided MC detection algorithm on the full field digital mammograms (FFDMs) using deep convolution neural network (DCNN). Firstly, a MC candidate detection system was used to obtain potential MC candidates. Then a DCNN was trained using a novel adaptive learning strategy, neutrosophic reinforcement sample learning (NRSL) strategy to speed up the learning process. The trained DCNN served to recognize true MCs. After been classified by DCNN, a density-based regional clustering method was imposed to form MC clusters. The accuracy of the DCNN with our proposed NRSL strategy converges faster and goes higher than the traditional DCNN at same epochs, and the obtained an accuracy of 99.87% on training set, 95.12% on validation set, and 93.68% on testing set at epoch 40. For cluster-based MC cluster detection evaluation, a sensitivity of 90% was achieved at 0.13 false positives (FPs) per image. The obtained results demonstrate that the designed DCNN plays a significant role in the MC detection after being prior trained.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.