KEYWORDS: Resonators, Signal processing, Polarization, Gyroscopes, Digital signal processing, Fiber optic gyroscopes, Kerr effect, Polarizers, Temperature metrology, Signal detection
The resonant fiber optic gyro (RFOG) is a high accuracy inertial rotation sensor based on the Sagnac effect. The existence of various noises, including the nonreciprocal noises such as the polarization noise and the Kerr noise as well as the reciprocal circuit noise, limits the performance improvement of the RFOG. An improved scheme by inserting two in-line polarizers in the polarization maintaining fiber transmission-type resonator has been proposed to suppress the polarization-fluctuation induced drift. Furthermore, the adoption of the air-core photonic bandgap fibers (PBFs) offers a novel solution to reduce the optical Kerr effect. In addition, A digital signal processor is designed to reduce the reciprocal noises and detect the rotation information. A minimum actual rotation of 0.001°/s is achieved. The dynamic range is improved by a factor of 7 and the scale factor nonlinearity is decreased by a factor of 60.
A novel hybrid polarization-maintaining (PM) air-core photonic bandgap fiber (PBF) ring resonator is demonstrated by using a conventional PM fiber coupler formed by splicing a section of air-core PBF into the resonator. The coupling loss between the PM air-core PBF and the conventional solid-core PM fiber is reduced down to ∼1.8 dB per junction. With the countermeasures proposed to reduce the backscattering induced noise, a bias stability of approximately 0.007 °/s was observed over a 1 hour timeframe, which is the best result reported to date, to the best of our knowledge, for RFOGs equipped with a hybrid air-core PBF ring resonator.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.