Micro-scale removal of Cu from a dielectric substrate has applications in microelectronics, patch antenna fabrication and frequency selective surface (FSS) manufacturing. Pulsed laser-based micro-scribing of Copper (Cu) from a dielectric is a preferred technique to avoid the adverse effects of chemical etching, such as toxicity and corrosive nature of the etchant, difficulty in fabrication of mask etc. However, pulsed laser-assisted removal of Cu from a dielectric in the air will produce recast layer/ redeposit, oxide layer near the ablation zone and thermal damage to the dielectric is another challenge. In this study, a hybrid technique with nanosecond laser-activated electrochemical micro-scribing of Cu is demonstrated. The technique was extended to remove 35 μm Cu from Rogers-RO4003 dielectric with a thickness ≈0.75 mm to fabricate FSS samples in X-band. The Cu-deposited dielectric substrate was immersed in Sodium Chloride (NaCl) solution, the laser beam was directed through a negatively biased tool electrode and the sample was biased positively. In this hybrid technique, along with laser-assisted material removal, laser-activated electrochemical etching also removed Cu selectively. The laser irradiation coupled with the NaCl solution induced preferential micro-etching, resulting in improved surface morphology without re-deposition and recast layer and thermal protection to the dielectric substrate. The FSS sample produced with the laser-hybrid micro-scribing was working at 10.3 GHz.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.