Performing attenuation measurements in unclad single crystal sapphire fiber has traditionally been accomplished through use the cutback method. Because single-crystal sapphire fibers do not cleave easily like silica fibers, this method requires repeated cutting and polishing of the sapphire fiber sample; which is very time consuming and introduces uncertainty in each loss measurement. In this paper, we present a new method to measure attenuation in sapphire or other single-crystal fibers based on distributed sapphire Raman optical time domain reflectometry (OTDR). This method is both nondestructive, significantly faster than the cutback method, and capable of measuring the local loss along the entire length of the fiber.
We present a large-core single-mode “windmill” single crystal sapphire optical fiber (SCSF) design, which exhibits single-mode operation by stripping off the higher-order modes (HOMs) while maintaining the fundamental mode. The “windmill” SCSF design was analyzed using the finite element analysis method, in which all the HOMs are leaky. The numerical simulation results show single-mode operation in the spectral range from 0.4 to 2 μm in the windmill SCSF, with an effective core diameter as large as 14 μm. Such fiber is expected to improve the performance of many of the current sapphire fiber optic sensor structures.
The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.
A type of single crystal sapphire optical fiber (SCSF) design is proposed to reduce the number of guided modes via a highly dispersive cladding with a periodic array of high- and low-index regions in the azimuthal direction. The structure retains a “core” region of pure single crystal (SC) sapphire in the center of the fiber and a “cladding” region of alternating layers of air and SC sapphire in the azimuthal direction that is uniform in the radial direction. The modal characteristics and confinement losses of the fundamental mode were analyzed via the finite element method by varying the effective core diameter and the dimensions of the “windmill”-shaped cladding. The simulation results showed that the number of guided modes was significantly reduced in the windmill fiber design, as the radial dimension of the air and SC sapphire cladding regions increase with corresponding decrease in the azimuthal dimension. It is anticipated that the windmill SCSF will readily improve the performance of current fiber optic sensors in the harsh environment and potentially enable those that were limited by the extremely large modal volume of unclad SCSF.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.