In this study, we aimed to develop a new optical biopsy technique for aganglionosis of Hirschsprung disease (HSCR) and we then evaluated a custom designed Raman optical biopsy system combined with deep learning based on convolutional neural networks (CNNs). Surgical specimens of formalin-fixed tissue of HSCR patients were subjected to this study. In the result, we achieved more than 90% classification accuracy between the normal and the lesion segments in mucosa. This study shows that CNN is useful for discriminating Raman spectra of the human gastrointestinal wall.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.