Contemporary battery management systems (BMS) rely on monitoring external parameters such as voltage and current to ensure that the battery operates safely and has the required performance, often resulting in overdesign and inefficient capacity usage. Embedded sensors can be used for internal battery condition monitoring to provide accurate operating status information and state of charge. This paper presents an embedded optical sensing method using a tiny fiber optic sensor implanted inside a lead-acid battery. Under the premise of not affecting the performance of the battery, the refractive index sensitive characteristics of the inclined grating are used to monitor and feedback the electrolyte concentration in the process of battery discharge in real time. The tilted fiber Bragg grating(TFBG) sensor can provide on-line feedback of discharge through transmission spectrum. And it can also realize the high sensitivity online monitoring of the discharge quantity of lead-acid battery, which provides a convenient method for researchers and engineers to manage the battery.
In this paper, a multi-parameter optical fiber system is developed and demonstrated by using a single polarimetric fiber ring laser sensor and beat frequency demodulation technique. The polarimetric fiber ring laser is formed by a fiber Bragg grating, a piece of Erbium doped fiber and a 3 dB fiber coupler. Since the fiber laser cavity is long enough, there are many longitudinal modes in the laser cavity. For each order longitudinal mode, two orthogonal polarization modes will experience slightly mode splitting due to the intrinsic fiber birefringence. As a result, in this polarimetric fiber ring laser, there exists two kinds of beat frequency signals, i.e. longitudinal mode beat frequency and polarization mode beat frequency signals. When the fiber laser cavity suffers from external perturbations, such as temperature change, strain change, and the fiber birefringence change, these two kinds of beat frequency signals will experience different response and can be used to measure multiple parameters simultaneously. We have theoretically analyzed the principle of measurement temperature, strain and fiber birefringence and experimentally measured these parameters in the test. The proposed multi-parameter sensing system just uses a single polarimetric fiber ring laser sensor and one beat frequency demodulation equipment. It will be promising in many application fields due to its advantages of simple structure, portability, high sensitivity, and low cost.
The 16-channel multi-longitudinal mode fiber laser sensor array is investigated experimentally by the wavelength/frequency division multiplexing technique. In the proposed sensing system, a 4×4 sensor array is established by a few different coupling-ratio couplers, and four different fiber Bragg gratings (FBG) with different center wavelengths are used as four different sensing units. In each sensor unit, four parallel fiber laser sensors have the same operating wavelengths FBGs, but their effective laser cavity lengths slightly different from each other. Every cavity is formed by a fiber Bragg grating (FBG) serving as one reflection mirror, a piece of erbium-doped fiber (EDF) acting as the gain medium, and a Faraday rotator mirror (FRM) serving as other reflection mirror. When the pump power is higher than threshold value, the 16-channel fiber laser sensor array is stimulated stably. The frequency of the beat signal of the fiber laser sensor with different cavity lengths is used to realize frequency division multiplexing, and the wavelength division multiplexing is realized according to the operation wavelength of the fiber laser. The beat frequency signals are generated on a photodetector(PD), and monitored by a frequency spectrum analyzer(FSA). By tracking the shift of the beat frequency, all of the 16 laser sensors can be demodulated and real-time discriminated. The result of the experiment shows that different channels can be demodulated independently. The applications of the sensor array for strain and temperature measurements are also investigated. The strain or temperature information can be extracted from the change of the beat frequency signals according to the wavelength-frequency division multiplexing and the beat signal demodulation. The proposed hybrid multiplexing system can greatly reduce the weight, volume, and cost of the fiber laser sensors system while increasing the amount of the sensors multiplexable, which making it very competitive in some applications fields requiring large scale arrays such as space vehicles, marine infrastructure systems and constructional engineering.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.