Based on the quantum mechanics principles and classically calculated dressed potential surfaces by using field assisted dissociation model the dissociation probability for CH4+ molecule exposed with a 100 femtosecond 8 Jcm-2 Ti:sapphire laser pulses is calculated. Using the gradient optimization method two tailored rectangular laser pulses for controlling the dissociation of C-H bond of CH4+ molecule along laser pulse direction is found.
In the proposed optimization method, the complicacy of solving Schrodinger wave equation is reduced by using classical method and in contrast to the usual controlling and pulse shaping methods of chemical reactions, the experimental data is not needed and this reduces the controlling costs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.