To manufacture high precision optical glass microstructures, finite element simulation and experiments of precision glass molding (PGM) are carried out to study the influence of relaxation effect on internal stress and deformation of the glass material. Two kinds of microstructures including microgrooves and micropyramids are fabricated by PGM. First, a two-dimensional axisymmetric finite element model of the PGM is established, and three kinds of molding schemes are put forward and analyzed, including quick molding and holding for a period of time, molding with low speed, molding by gravity. The advantages and disadvantages of the three schemes are also analyzed. Second, the microgrooves are fabricated using the scheme of molding by gravity, and then the existing problems are discussed. Finally, the micropyramids are fabricated by the low speed molding method, and the forming profiles are compared.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.