We evaluate a new method for computing color anaglyphs based on uniform approximation in CIE color space. The method depends on the spectral distribution properties of the primaries of the monitor and the transmission functions of the filters in the viewing glasses. We will compare the result of this method with several other methods that have been proposed for computing anaglyphs. To compute the color at a given pixel in the anaglyph image requires solving a linear program. We exploit computational properties of the simplex algorithm to reduce computation time by 72 to 89 percent. After computing the color at a pixel, a depth-first search is performed to collect all neighboring pixels with similar color so that a simple matrix-vector multiplication can be applied. We also parallelize the algorithm and implement it on a cluster environment. We discuss the effects of different data dividing schemes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.