KEYWORDS: Antennas, Radar, Sensors, Synthetic aperture radar, Signal attenuation, Receivers, Near field, Spatial resolution, Signal to noise ratio, Oscillators
This paper presents a hidden chamber detector (HCD) using radio frequency (RF) signals’ penetration and reflection characteristics. The sensor of the chamber detector is a linear frequency modulated continuous wave (LFMCW) time division multiple access (TDMA) multiple input multiple output (MIMO) synthetic aperture radar (SAR). The basic idea of the sensor system is to scan the target wall and form a 2-D image of the wall with a high depth resolution and a proper angular resolution (cross range resolution). When there is no hidden chamber behind the wall, the radar will receive reflected signals from the room wall. While if there is a hidden chamber behind the room wall, there will be reflected signals from the room wall and the hidden chamber walls. Thus, the hidden chamber can be detected using the reflected singles from the chamber walls. The gated LFMCW TDMA MIMO SAR is configured with multiple transmitting antennas and multiple receiving antennas. Each transmitting and receiving antenna pair constructs an equivalent virtual array element. All virtual array elements construct the virtual antenna array (or synthetic aperture). The virtual array oversees the angular resolution along the array direction (vertical direction), and the narrow antenna beam is in charge of the angular resolution in the cross-array direction (horizontal direction). The high depth resolution is obtained using the gated LFMCW TDMA radar. Simulations show that the hidden chamber detector can detect chambers larger than 20cm by 20cm by 20cm at a distance of 0.3m away from the room wall.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.