In the paper, a decoupling method for homogeneous and dual-medium cells’ refractive index, and the entropy tomographic phase imaging method are proposed. Based on the decoupling method, the 3D morphology of sample can be obtained by the imaging method, which only needs two phase images of the cell. Thus the information about 3D refractive index distribution is given, and the 3D structure image of the model is reconstructed as well based on the relationship between the refractive index and thickness. In order to verify these methods, we set up the typical models after analysing the characteristic of blood cells, and the related orthogonal phase images are obtained by simulation experiment. Thus the 3D reconstructed structure images of the models are presented in this paper. Finally, the feasibility of this method is verified by simulating on a red blood cell and a monocyte model. The results show that subsurface imaging of samples can be achieved based on this method with a good accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.