With the great development of deep learning, the performance of single image super-resolution (SR) has achieved tremendous progress. As an emerging and promising branch of the SR task, the arbitrary-scale SR task is receiving increasing attention from researchers due to its efficiency and practicality. Although the recent work learning implicit image function opened a solution for arbitrary-scale image SR, its reconstructed images contained structural distortions caused by defective prediction of high-frequency textures. To overcome this problem and further improve the performance of arbitrary-scale image SR, we propose an effective arbitrary-scale SR network, namely, enhanced arbitrary-scale super-resolution, which achieves the arbitrary-scale SR task in a single model by introducing a local-global encoder and enhanced implicit image function. Unlike conventional SR methods, which only stack up convolutional blocks to extract the local feature, the local-global encoder has two branches in parallel, including the local feature branch and the global prior branch. The former effectively extracts the local feature from a low-resolution image and the latter extracts the global prior to assist in the high-resolution image reconstruction. Next, we redesigned an enhanced implicit image function in the form of a dual modulation multiplayer perceptron (MLP) by replacing the implicit image function with a vanilla MLP. Moreover, we introduce the spatial encoding to further reduce structural distortions of reconstructed images. Extensive experiments were conducted to evaluate the performance and demonstrate the superiority of our proposed model.
Due to its excellent performance in terms of fast implementation, strong generalization capability, and straightforward solution, extreme learning machine (ELM) has attracted increasing attention in pattern recognition such as face recognition and hyperspectral image (HSI) classification. However, the performance of ELM for HSI classification remains a challenging problem especially in effective extraction of the featured information from the massive volume of data. To this end, we propose a method to combine convolutional neural network (CNN) with ELM (CNN–ELM) for HSI classification. As CNN has been successfully applied for feature extraction in different applications, the combined CNN–ELM approach aims to take advantages of these two techniques for improved classification of HSI. By preserving the spatial features while reconstructing the spectral features of HSI, the proposed CNN–ELM method can significantly improve the accuracy of HSI classification without increasing the computational complexity. Comprehensive experiments using three publicly available HSI datasets, Pavia University, Pavia center, and Salinas, have fully validated the improved performance of the proposed method when benchmarking with several state-of-the-art approaches.
We describe a new pose-estimation algorithm via integration of the strength in both empirical mode decomposition (EMD) and mutual information. While mutual information is exploited to measure the similarity between facial images to estimate poses, EMD is exploited to decompose input facial images into a number of intrinsic mode function (IMF) components, which redistribute the effect of noise, expression changes, and illumination variations as such that, when the input facial image is described by the selected IMF components, all the negative effects can be minimized. Extensive experiments were carried out in comparisons to existing representative techniques, and the results show that the proposed algorithm achieves better pose-estimation performances with robustness to noise corruption, illumination variation, and facial expressions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.