Acoustic-graphene-plasmons (AGPs) are highly confined electromagnetic modes, which carry extreme momentum and low loss in the Mid-infrared (MIR) to Terahertz (THz) spectra. They are therefore enablers of extremely strong light-matter interactions at these long wavelengths. However, owing to their large momentum they are also challenging to excite and detect. Here, we demonstrate a new way to excite AGPs that are confined to nanometric-scale cavities directly from the far-field, via localized graphene-plasmon-magnetic-resonators (GPMRs). This approach enables the efficient excitation of single AGP cavities, which are able to confine MIR light to record-breaking ultra-small mode-volumes, which are over a billion times smaller than their free-space volume.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.